Page 62 - 79_03
P. 62
Regulación
de
la
neurotransmisión
glicinérgica…
5.
AGRADECIMIENTOS
Este
trabajo
se
ha
realizado
con
la
financiación
del
Ministerio
de
Ciencia
e
Innovación
(SAF2008--05436
y
SAF2011--28674),
la
Comunidad
Autónoma
de
Madrid
(SSAL--0253/2006)
y
la
Fundación
Ramón
Areces.
6.
REFERENCIAS
1.
Melzack
R.;
Wall
P.D.
Pain
mechanisms:
a
new
theory.
Science
150,
971--9
(1965).
2.
Legendre
P.
The
glycinergic
inhibitory
synapse.
Cell.
Mol.
Life.
Sci.
58,
760--93
(2001).
3.
Zafra
F.;
Aragón
C.;
Olivares
L.;
Danbolt
N.C.;
Giménez
C.;
Storm--Mathisen
J.
Glycine
transporters
are
differentially
expressed
among
CNS
cells.
J.
Neurosci.
15,
3952--69
(1995).
4.
Aragón
C.;
López--Corcuera
B.
Structure,
function
and
regulation
of
glycine
neurotransporters.
Eur.
J.
Pharmacol.
479,
249--62
(2003).
5.
Welchman
R.L.;
Gordon
C.;
Mayer
R.J.
Ubiquitin
and
ubiquitin--like
proteins
as
multifunctional
signals.
Nat.
Rev.
Mol.
Cell.
Biol.
6,
599--609
(2005).
6.
Büttner
C.;
Sadtler
S.;
Leyendecker
A.;
Laube
B.;
Griffon
N.;
Betz
H.;
Schmalzing
G.
Ubiquitination
precedes
internalization
and
proteolytic
cleavage
of
plasma
membrane--
bound
glycine
receptors.
J.
Biol.
Chem.
276,
42978--85
(2001).
7.
Fernández--Sánchez
E.;
Martínez--Villarreal
J.;
Giménez
C.;
Zafra
F.
Constitutive
and
regulated
endocytosis
of
the
glycine
transporter
GLYT1b
is
controlled
by
ubiquitination.
J.
Biol.
Chem.
284,
19482--92
(2009).
8.
de
Juan--Sanz
J.;
Zafra
F.;
López--Corcuera
B.;
Aragón
C.
Endocytosis
of
the
neuronal
glycine
transporter
GLYT2:
role
of
membrane
rafts
and
protein
kinase
C--dependent
ubiquitination.
Traffic.
12,
1850--67
(2011).
9.
Moore
K.A.;
Kohno
T.;
Karchewski
L.A.;
Scholz
J.;
Baba
H.;
Woolf
C.J.
Partial
peripheral
nerve
injury
promotes
a
selective
loss
of
GABAergic
inhibition
in
the
superficial
dorsal
horn
of
the
spinal
cord.
J.
Neurosci.
22,
6724–31
(2002).
10.
Scholz
J.;
Broom
D.C.;
Youn
D.H.;
Mills
C.D.;
Kohno
T.;
Suter
M.R.;
Moore
K.A.;
Decosterd
I.;
Coggeshall
R.E.;
Woolf
C.J.
Blocking
caspase
activity
prevents
transsynaptic
neuronal
apoptosis
and
the
loss
of
inhibition
in
lamina
II
of
the
dorsal
horn
after
peripheral
nerve
injury.
J.
Neurosci.
25,
7317–23
(2005).
11.
Polgar
E.;
Hughes
D.I.;
Riddell
J.S.;
Maxwell
D.J.;
Puskar
Z.;
Todd
A.J.
Selective
loss
of
spinal
GABAergic
or
glycinergic
neurons
is
not
necessary
for
development
of
thermal
hyperalgesia
in
the
chronic
constriction
injury
model
of
neuropathic
pain.
Pain.
104,
229–
39
(2003).
12.
Coull
J.A.;
Boudreau
D.;
Bachand
K.;
Prescott
S.A.;
Nault
F.;
Sik
A.;
De
Koninck
P.;
De
Koninck
Y.
Trans--synaptic
shift
in
anion
gradient
in
spinal
lamina
I
neurons
as
a
mechanism
of
neuropathic
pain.
Nature.
424,
938–42
(2003).
13.
Coull
J.A.;
Beggs
S.;
Boudreau
D.;
Boivin
D.;
Tsuda
M.;
Inoue
K.;
Gravel
C.;
Salter
M.W.;
De
Koninck
Y.
BDNF
from
microglia
causes
the
shift
in
neuronal
anion
gradient
underlying
neuropathic
pain.
Nature
438,
1017–21
(2005).
14.
Ahmadi
S.;
Lippross
S.;
Neuhuber
W.
L.;
Zeilhofer
H.
U.
PGE2
selectively
blocks
inhibitory
glycinergic
neurotransmission
onto
rat
superficial
dorsal
horn
neurons.
Nat.
Neurosci.
5,
34–40
(2002).
15.
Trebino
C.E.;
Stock
J.L.;
Gibbons
C.P.;
Naiman
B.M.;
Wachtmann
T.S.;
Umland
J.P.;
Pandher
K.;
Lapointe
J.M.;
Saha
S.;
Roach
M.L.;
Carter
D.;
Thomas
N.A.;
Durtschi
B.A.;
McNeish
J.D.;
Hambor
J.E.;
Jakobsson
P.J.;
Carty
T.J.;
Perez
J.R.;
Audoly
L.P.
Impaired
inflammatory
and
pain
responses
in
mice
lacking
an
inducible
prostaglandin
E
synthase.
Proc.
Natl.
Acad.
Sci.
USA.
100,
9044--9
(2003).
447