Page 61 - 88_01
P. 61

ANALES                                                                            Chen H, Shen Y, Teichman E, Li D, Wang GG, Che X, Kaniskan HU,
RANF                                                                              Jin J. Harnessing the E3 Ligase KEAP1 for Targeted Protein De-
                                                                                  gradation. J Am Chem Soc. 2021;143(37):15073-15083.
  www.analesranf.com                                                         34. Du X, Volkov OA, Czerwinski RM, Tan H, Huerta C, Morton ER, Rizzi
                                                                                  JR, Wehn PM, Xu R, Nijhawan D, Wallace EM. Structural basis and
     CRBN E3 ubiquitin ligase in complex with thalidomide. Nature,                kinetic pathway of RBM39 recruitment to DCAF15 by a sul-
     2014;512(7512):49-53.                                                        fonamide molecular glue E7820. Structure.
20. Nowak RP, DeAngelo SL, Buckley D, He Z, Donovan KA, An J, Fischer             2019;27(11):1625-1633.e3.
     ES. Plasticity in binding confers selectivity in ligand-induced         35. Li L, Mi D, Pei H, Duan Q, Wang X, Zhou W, Jin J, Li D, Liu M, Chen
     protein degradation. Nat Chem Biol. 2018;14(7):706-714.                      Y. In Vivo Target Protein Degradation Induced by PROTACs Based
21. Gadd MS, Testa A, Lucas X, Chan KH, Chen W, Lamont DJ, Zengerle               on E3 Ligase DCAF15. Signal Transduct Target Ther.
     M, Ciulli A. Structural basis of PROTAC cooperative recognition for          2020;5(1):129.
     selective protein degradation. Nat Chem Biol. 2017;13(5):514-           36. Ding Y, Fei Y, Lu B. Emerging new concepts of degrader technologies.
     521.                                                                         Trends Pharmacol Sci. 2020; 41(7):464-74.
22. Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus        37 . Alabi SA, Crews CM. Major advances in the targeted protein
     gene with a zinc finger-like motif. J Virol. 1993;67(4):2168-2174.           degradation: PROTACs, LYTACs, and MADTACs. J Biol Chem.
23 . Ma Z, Ji Y, Yu Y, Liang D. Specific non-genetic IAP-based                    2021;296:100647.
     protein erasers (SNIPERs) as a potential therapeutic strategy. Eur      38. Banik S, Pedram K, Wisnovsky S, Riley N, Bertozzi C. Lysosome
     J Med Chem. 2021;216:113247.                                                 Targeting Chimeras (LYTACs) for the Degradation of Secreted and
24. Sekine K, Takubo K, Kikuchi R, Nishimoto M, Kitagawa M, Abe F,                Membrane Proteins. Nature. 2020;584:291-7.
     Nishikawa K, Tsuruo T, Natio M. Small molecules destabilize cIAP1       39. Takahashi D, Moriyama J, Nakamura T, Miki E, Takahashi E, Sato
     by activating auto- ubiquitylation. J Biol Chem.                             A, Akaike T, Itto-Nakama K, Arimoto H. AUTACs: cargo-specific de-
     2008;283(14):8961-8.                                                         graders using selective autophagy. Mol Cell. 2019;76:797-810.
25. Ma Z, Ji Y, Yu Y, Liang D. Specific non-genetic IAP-based                40. Li Z, Zhu C, Ding Y, Fei Y, Lu, B. ATTEC: a potential new approach to
     protein erasers (SNIPERs) as a potential therapeutic strategy. Eur           target proteinopathies. Autophagy 2020;16(1):185-7.
     J Med Chem. 2021;216:113247.
26. Huun J, Gansmo LB.; Mannsåker B, Iversen GT, Sommerfelt-Pettersen                                        Si desea citar nuestro artículo:
     J, Øvrebø JI, Knappskog S. The Functional Roles of the MDM2 Splice       PROTAC: Redirigiendo los sistemas de degradación
     Variants P2-MDM2-10 and MDM2-? 5 in Breast Cancer Cells.
     Transl Oncol. 2017;10(5):806-817.                                                              de proteínas a nuevos sustratos
27. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong                 Ángel Cores Esperón y Mercedes Villacampa Sanz
     N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu E.A. In vivo acti-
     vation of the p53 pathway by small-molecule antagonists of MDM2.                                       An Real Acad Farm [Internet].
     Science. 2004;303(5659):844-8.                                                  An. Real Acad. Farm.Vol. 88. nº 1 (2022) · pp 45-59
28. Schneekloth AR, Pucheault M, Tae HS, Crews CM. Targeted Intrace-         DOI: http://dx.doi.org/10.53519/analesranf.2022.88.01.03
     llular Protein Degradation Induced by a Small Molecule: En Route
     to Chemical Proteomics. Bioorg Med Chem Lett. 2008;18(22):5904-
     8.
29. Hines J, Lartigue S, Dong H, Qian Y, Crews CM. MDM2-recruiting
     PROTAC offers superior, synergistic antiproliferative activity via si-
     multaneous degradation of BRD4 and stabilization of p53. Cancer
     Res. 2019;79(1):251-262.
30. Canning P, Sorrell FJ, Bullock AN. Structural basis of Keap1 inter-
     actions with Nrf2. Free Radic Biol Med. 2015:88;101-7.
31. Lu M, Liu T, Jiao Q, Ji J, Ta M, Liu Y, Jiang Z. Discovery of a Keap1-
     dependent peptide PROTAC to knockdown Tau by ubiquiti-
     nation-proteasome degradation pathway. Eur J Med Chem.
     2018;146:251-9.
32. Tong B, Luo M, Xie Y, Spradlin JN, Tallarico JA, McKenna JM, Schirle
     M, Nomura DK. Bardoxolone conjugation enables targeted protein
     degradation of BRD4. Sci Rep. 2020;10(1):15543.
33. Wei J, Meng F, Park KS, Yim H, Velez J, Kumar P, Wang L, Xie L,

                                                                             PROTAC: Redirigiendo los sistemas de degradación              59
                                                                                                   de proteínas a nuevos sustratos

                                                                                           Ángel Cores Esperón y Mercedes Villacampa Sanz
                                                                                  An. Real Acad. Farm.Vol. 88. nº 1 (2022) · pp. 45-59
   56   57   58   59   60   61   62   63   64   65   66