Page 19 - 88_01
P. 19

ANALES                                                                             cancer. Proc Natl Acad Sci U S A 104, 11400-11405 (2007).
RANF                                                                          95. V. Tarasov et al., Differential regulation of microRNAs by p53 reve-

  www.analesranf.com                                                               aled by massively parallel sequencing: miR-34a is a p53 target that
                                                                                   induces apoptosis and G1-arrest. Cell Cycle 6, 1586-1593 (2007).
78. K. Woods, J. M. Thomson, S. M. Hammond, Direct regulation of an           96. D. C. Corney, A. Flesken-Nikitin, A. K. Godwin, W. Wang, A. Y. Ni-
     oncogenic micro-RNA cluster by E2F transcription factors. J Biol              kitin, MicroRNA-34b and MicroRNA-34c Are Targets of p53 and Co-
     Chem 282, 2130-2134 (2007).                                                   operate in Control of Cell Proliferation and Adhesion-Independent
                                                                                   Growth. Cancer Res 67, 8433-8438 (2007).
79. K. A. O'Donnell, E. A. Wentzel, K. I. Zeller, C. V. Dang, J. T. Mendell,  97. T. C. Chang et al., Transactivation of miR-34a by p53 broadly in-
     c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435,               fluences gene expression and promotes apoptosis. Mol Cell 26, 745-
     839-843 (2005).                                                               752 (2007).
                                                                              98. A. Ota et al., Identification and characterization of a novel gene,
80. Y. Sylvestre et al., An E2F/miR-20a autoregulatory feedback loop.              C13orf25, as a target for 13q31-q32 amplification in malignant
     J Biol Chem 282, 2135-2143 (2007).                                            lymphoma. Cancer Res 64, 3087-3095 (2004).
                                                                              99. L. He et al., A microRNA polycistron as a potential human oncogene.
81. F. Meng et al., MicroRNA-21 regulates expression of the PTEN tumor             Nature 435, 828-833 (2005).
     suppressor gene in human hepatocellular cancer. Gastroenterology         100. M. Dews et al., Augmentation of tumor angiogenesis by a Myc-ac-
     133, 647-658 (2007).                                                          tivated microRNA cluster. Nat Genet 38, 1060-1065 (2006).
                                                                              101. T. C. Chang et al., Widespread microRNA repression by Myc contri-
82. S. Zhu, M. L. Si, H. Wu, Y. Y. Mo, MicroRNA-21 targets the tumor               butes to tumorigenesis. Nat Genet 40, 43-50 (2008).
     suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282, 14328-            102. P. M. Voorhoeve et al., A genetic screen implicates miRNA-372 and
     14336 (2007).                                                                 miRNA-373 as oncogenes in testicular germ cell tumors. Adv Exp
                                                                                   Med Biol 604, 17-46 (2007).
83. L. B. Frankel et al., Programmed Cell Death 4 (PDCD4) Is an Im-           103. M. L. Si et al., miR-21-mediated tumor growth. Oncogene 26,
     portant Functional Target of the MicroRNA miR-21 in Breast Cancer             2799-2803 (2007).
     Cells. J Biol Chem 283, 1026-1033 (2008).                                104. M. F. Corsten et al., MicroRNA-21 Knockdown Disrupts Glioma
                                                                                   Growth in vivo and Displays Synergistic Cytotoxicity with Neural Pre-
84. I. A. Asangani et al., MicroRNA-21 (miR-21) post-transcriptionally             cursor Cell Delivered S-TRAIL in Human Gliomas. Cancer Res 67,
     downregulates tumor suppressor Pdcd4 and stimulates invasion, in-             8994-9000 (2007).
     travasation and metastasis in colorectal cancer. Oncogene, (2007).       105. C. Roldo et al., MicroRNA expression abnormalities in pancreatic en-
                                                                                   docrine and acinar tumors are associated with distinctive pathologic
85. P. P. Medina, M. Nolde, F. J. Slack, OncomiR addiction in an in vivo           features and clinical behavior. J Clin Oncol 24, 4677-4684 (2006).
     model of microRNA-21-induced pre-B-cell lymphoma. Nature 467,            106. M. V. Iorio et al., MicroRNA gene expression deregulation in human
     86-90 (2010).                                                                 breast cancer. Cancer Res 65, 7065-7070 (2005).
                                                                              107. J. A. Chan, A. M. Krichevsky, K. S. Kosik, MicroRNA-21 is an antia-
86. M. Gironella et al., Tumor protein 53-induced nuclear protein 1 ex-            poptotic factor in human glioblastoma cells. Cancer Res 65, 6029-
     pression is repressed by miR-155, and its restoration inhibits pan-           6033 (2005).
     creatic tumor development. Proc Natl Acad Sci U S A 104,                 108. A. J. Schetter et al., MicroRNA expression profiles associated with
     16170-16175 (2007).                                                           prognosis and therapeutic outcome in colon adenocarcinoma. Jama
                                                                                   299, 425-436 (2008).
87. H. Q. Peng et al., Mutations of the p53 gene do not occur in testis       109. W. Tam, D. Ben-Yehuda, W. S. Hayward, bic, a novel gene activated
     cancer. Cancer Res 53, 3574-3578 (1993).                                      by proviral insertions in avian leukosis virus-induced lymphomas,
                                                                                   is likely to function through its noncoding RNA. Mol Cell Biol 17,
88. F. Bullrich et al., Characterization of the 13q14 tumor suppressor             1490-1502 (1997).
     locus in CLL: identification of ALT1, an alternative splice variant of   110. T. Zhang, K. Nie, W. Tam, BIC is processed efficiently to microRNA-
     the LEU2 gene. Cancer Res 61, 6640-6648 (2001).                               155 in Burkitt lymphoma cells. Leukemia, (2008).
                                                                              111. B. E. Clurman, W. S. Hayward, Multiple proto-oncogene activations
89. G. A. Calin et al., Frequent deletions and down-regulation of micro-
     RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leu-
     kemia. Proc Natl Acad Sci U S A 99, 15524-15529 (2002).

90. G. A. Calin et al., A MicroRNA signature associated with prognosis
     and progression in chronic lymphocytic leukemia. N Engl J Med 353,
     1793-1801 (2005).

91. J. Takamizawa et al., Reduced expression of the let-7 microRNAs in
     human lung cancers in association with shortened postoperative sur-
     vival. Cancer Res 64, 3753-3756 (2004).

92. G. A. Calin et al., Human microRNA genes are frequently located at
     fragile sites and genomic regions involved in cancers. Proc Natl Acad
     Sci U S A 101, 2999-3004 (2004).

93. S. L. Yu et al., MicroRNA Signature Predicts Survival and Relapse in
     Lung Cancer. Cancer Cell 13, 48-57 (2008).

94. S. Shell et al., let-7 expression defines two differentiation stages of

                                                                              ONCOmicroARNs y sus futuras aplicaciones farmacológicas                       17
                                                                                                                           Pedro Pablo Medina Vico

                                                                                                       An. Real Acad. Farm.Vol. 88. nº 1 (2022) · pp. 7-18
   14   15   16   17   18   19   20   21   22   23   24