Page 18 - 88_01
P. 18

HOXB8 mRNA. Science 304, 594-596 (2004).                                                                                     ANALES
37. R. S. Pillai et al., Inhibition of translational initiation by let-7 Mi-                                                          RANF

     croRNA in human cells. Science 309, 1573-1576 (2005).                                                                                        www.analesranf.com
38. P. H. Olsen, V. Ambros, The lin-4 regulatory RNA controls develop-
                                                                              60. Y. Wang, R. Medvid, C. Melton, R. Jaenisch, R. Blelloch, DGCR8 is
     mental timing in Caenorhabditis elegans by blocking LIN-14 protein            essential for microRNA biogenesis and silencing of embryonic stem
     synthesis after the initiation of translation. Dev Biol 216, 671-680          cell self-renewal. Nat Genet 39, 380-385 (2007).
     (1999).
43. S. R. Viswanathan, G. Q. Daley, R. I. Gregory, Selective blockade of      61. R. Koesters et al., Human eukaryotic initiation factor EIF2C1 gene:
     microRNA processing by Lin28. Science 320, 97-100 (2008).                     cDNA sequence, genomic organization, localization to chromosomal
44. S. Bagga et al., Regulation by let-7 and lin-4 miRNAs results in               bands 1p34-p35, and expression. Genomics 61, 210-218 (1999).
     target mRNA degradation. Cell 122, 553-563 (2005).
45. P. P. Medina, F. J. Slack, microRNAs and cancer: an overview. Cell        62. A. Aravin et al., A novel class of small RNAs bind to MILI protein in
     Cycle 7, 2485-2492 (2008).                                                    mouse testes. Nature 442, 203-207 (2006).
46. A. Stark, J. Brennecke, N. Bushati, R. B. Russell, S. M. Cohen, Ani-
     mal MicroRNAs confer robustness to gene expression and have a            63. H. Taubert et al., Expression of the stem cell self-renewal gene Hiwi
     significant impact on 3'UTR evolution. Cell 123, 1133-1146                    and risk of tumour-related death in patients with soft-tissue sar-
     (2005).                                                                       coma. Oncogene 26, 1098-1100 (2007).
47. B. P. Lewis, C. B. Burge, D. P. Bartel, Conserved seed pairing, often
     flanked by adenosines, indicates that thousands of human genes           64. X. Liu et al., Expression of hiwi gene in human gastric cancer was
     are microRNA targets. Cell 120, 15-20 (2005).                                 associated with proliferation of cancer cells. Int J Cancer 118, 1922-
48. B. John et al., Human MicroRNA targets. PLoS Biol 2, e363 (2004).              1929 (2006).
49. A. Krek et al., Combinatorial microRNA target predictions. Nat Genet
     37, 495-500 (2005).                                                      65. D. Qiao, A. M. Zeeman, W. Deng, L. H. Looijenga, H. Lin, Molecular
50. A. Grimson et al., MicroRNA targeting specificity in mammals: de-              characterization of hiwi, a human member of the piwi gene family
     terminants beyond seed pairing. Mol Cell 27, 91-105 (2007).                   whose overexpression is correlated to seminomas. Oncogene 21,
51. D. Hanahan, R. A. Weinberg, The hallmarks of cancer. Cell 100,                 3988-3999 (2002).
     57-70 (2000).
52. N. Yanaihara et al., Unique microRNA molecular profiles in lung           66. J. Kota et al., Therapeutic microRNA delivery suppresses tumorige-
     cancer diagnosis and prognosis. Cancer Cell 9, 189-198 (2006).                nesis in a murine liver cancer model. Cell 137, 1005-1017 (2009).
53. J. Lu et al., MicroRNA expression profiles classify human cancers.
     Nature 435, 834-838 (2005).                                              67. A. Cimmino et al., miR-15 and miR-16 induce apoptosis by targe-
54. S. Volinia et al., A microRNA expression signature of human solid              ting BCL2. Proc Natl Acad Sci U S A 102, 13944-13949 (2005).
     tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103,
     2257-2261 (2006).                                                        68. S. M. Johnson et al., RAS is regulated by the let-7 microRNA family.
55. A. Esquela-Kerscher, F. J. Slack, Oncomirs - microRNAs with a role             Cell 120, 635-647 (2005).
     in cancer. Nat Rev Cancer 6, 259-269 (2006).
56. M. S. Kumar, J. Lu, K. L. Mercer, T. R. Golub, T. Jacks, Impaired mi-     69. C. Mayr, M. T. Hemann, D. P. Bartel, Disrupting the pairing between
     croRNA processing enhances cellular transformation and tumorige-              let-7 and Hmga2 enhances oncogenic transformation. Science 315,
     nesis. Nat Genet 39, 673-677 (2007).                                          1576-1579 (2007).
57. Y. Karube et al., Reduced expression of Dicer associated with poor
     prognosis in lung cancer patients. Cancer Sci 96, 111-115 (2005).        70. Y. S. Lee, A. Dutta, The tumor suppressor microRNA let-7 represses
58. E. P. Murchison, J. F. Partridge, O. H. Tam, S. Cheloufi, G. J. Hannon,        the HMGA2 oncogene. Genes Dev 21, 1025-1030 (2007).
     Characterization of Dicer-deficient murine embryonic stem cells. Proc
     Natl Acad Sci U S A 102, 12135-12140 (2005).                             71. V. B. Sampson et al., MicroRNA let-7a down-regulates MYC and re-
59. C. Kanellopoulou et al., Dicer-deficient mouse embryonic stem cells            verts MYC-induced growth in Burkitt lymphoma cells. Cancer Res
     are defective in differentiation and centromeric silencing. Genes Dev         67, 9762-9770 (2007).
     19, 489-501 (2005).
                                                                              72. C. D. Johnson et al., The let-7 microRNA represses cell proliferation
                                                                                   pathways in human cells. Cancer Res 67, 7713-7722 (2007).

                                                                              73. P. P. Trang* & Medina* et al., Regression of murine lung tumors by
                                                                                   the let-7 microRNA. Oncogene 29, 1580-1587 (2010).

                                                                              74. G. T. Bommer et al., p53-mediated activation of miRNA34 candidate
                                                                                   tumor-suppressor genes. Curr Biol 17, 1298-1307 (2007).

                                                                              75. C. Welch, Y. Chen, R. L. Stallings, MicroRNA-34a functions as a po-
                                                                                   tential tumor suppressor by inducing apoptosis in neuroblastoma
                                                                                   cells. Oncogene 26, 5017-5022 (2007).

                                                                              76. H. Tazawa, N. Tsuchiya, M. Izumiya, H. Nakagama, Tumor-suppres-
                                                                                   sive miR-34a induces senescence-like growth arrest through mo-
                                                                                   dulation of the E2F pathway in human colon cancer cells. Proc Natl
                                                                                   Acad Sci U S A 104, 15472-15477 (2007).

                                                                              77. L. He et al., A microRNA component of the p53 tumour suppressor
                                                                                   network. Nature 447, 1130-1134 (2007).

        OncomicroRNAs and their future pharmacological applications

16 Pedro Pablo Medina Vico
         An. Real Acad. Farm. Vol. 88. Nº 1 (2022) · pp.7-18
   13   14   15   16   17   18   19   20   21   22   23