Page 97 - 87_01
P. 97
ANALES tergent-free density gradients facilitates membrane fragment re-
RANF constitution. Korzeniowski M, Kwiatkowska K, Sobota A. Bioche-
mistry. 2003; 42(18):5358-67.
www.analesranf.com 132. Location is everything: lipid rafts and immune cell signaling. Dykstra
M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK. Annu Rev Immunol.
Rose JK. Cell. 1992; 68(3):533-44. 2003; 21:457-81.
119. Both sphingolipids and cholesterol participate in the detergent in- 133. Triton X-100 solubilization of mitochondrial inner and outer mem-
branes. Gurtubay JI, Goñi FM, Gómez-Fernández JC, Otamendi JJ,
solubility of alkaline phosphatase, a glycosylphosphatidylinositol- Macarulla JM. J Bioenerg Biomembr. 1980; 12(1-2):47-70.
anchored protein, in mammalian membranes. Hanada K, Nishijima 134. Effect of the nonionic detergent Triton X-100 on mitochondrial suc-
M, Akamatsu Y, Pagano RE. J Biol Chem. 1995; 270(11):6254- cinate- oxidizing enzymes. Barbero MC, Valpuesta JM, Rial E, Gur-
60. tubay JI, Goñi FM, Macarulla JM. Arch Biochem Biophys. 1984;
120. The differential miscibility of lipids as the basis for the formation of 228(2):560-8.
functional membrane rafts. Rietveld A, Simons K. Biochim Biophys 135. Physiological state of submitochondrial particles and their suscep-
Acta. 1998; 1376(3):467-79. tibility to Triton X-100. Goñi FM, Valpuesta JM, Barbero MC, Rial E,
121. Permeability and integrity properties of lecithin-sphingomyelin li- Gurtubay JI, Macarulla JM. Experientia. 1984; 40(2):193-5.
posomes. Hertz R, Barenholz Y. Chem Phys Lipids. 1975;15(2):138- 136. Protein--lipid interactions. A study of (Ca2+-Mg2+)ATPase re-
56. constituted with synthetic phospholipids. Gómez-Fernández JC, Goñi
122. Interaction of cholesterol with sphingomyelin in mixed membranes FM, Bach D, Restall C, Chapman D. FEBS Lett. 1979; 98(2):224-
containing phosphatidylcholine, studied by spin-label ESR and IR 8.
spectroscopies. A possible stabilization of gel-phase sphingolipid 137. A comparative study of the effect of various detergents on the struc-
domains by cholesterol. Veiga MP, Arrondo JL, Goñi FM, Alonso A, ture and function of sarcoplasmic reticulum vesicles. Villalaín J, Goñi
Marsh D. Biochemistry. 2001;40(8):2614-22. FM, Macarulla JM. Mol Cell Biochem. 1982; 49(2):113-8.
123. Effect of the structure of natural sterols and sphingolipids on the for- 138. Membrane-surfactant interactions. The effect of Triton X-100 on sar-
mation of ordered sphingolipid/sterol domains (rafts). Comparison coplasmic reticulum vesicles. Prado A, Arrondo JL, Villena A, Goñi
of cholesterol to plant, fungal, and disease-associated sterols and FM, Macarulla JM. Biochim Biophys Acta. 1983; 733(1):163-71.
comparison of sphingomyelin, cerebrosides, and ceramide. Xu X, 139. Solubilization of sarcoplasmic reticulum membranes by sodium do-
Bittman R, Duportail G, Heissler D, Vilcheze C, London E. J Biol decylsulphate. A Fourier-transform infrared spectroscopic study.
Chem. 2001; 276(36):33540-6. Prado A, Muga A, Castresana J, Goñi FM, Arrondo JL. FEBS Lett.
124. Cholesterol–phospholipid interactions, the liquid-ordered phase and 1990; 269(2):324-7.
lipid rafts in model and biological membranes. McMullen TP, Lewis 140. Interaction of membrane proteins and lipids with solubilizing de-
RN, McElhaney RN. Curr. Opin. Colloid Interface Sci. 2004; 8: 459– tergents. le Maire M, Champeil P, Moller JV. Biochim Biophys Acta.
468. 2000; 1508(1-2):86-111.
125. Lipid/detergent interaction thermodynamics as a function of mole- 141. The interaction of Triton X-100 with purple membranes. Detergent
cular shape. Heerklotz H, Binder H, Lantzsch G, Klose G, Blume A. binding, spectral changes and membrane solubilization. González-
J. Phys. Chem. B 1997; 101, 639–645. Mañas JM, Virto MD, Gurtubay JI, Goñi FM. Eur J Biochem. 1990;
126. The interaction of phosphatidylcholine bilayers with Triton X-100. 188(3):673-8.
Goñi FM, Urbaneja MA, Arrondo JL, Alonso A, Durrani AA, Chapman 142. Kinetics of purple membrane dark-adaptation in the presence of Tri-
D. Eur J Biochem. 1986; 160(3):659-65. ton X-100. González-Mañas JM, Goñi FM, Tribout M, Paredes S.
127. The sensitivity of lipid domains to small perturbations demonstrated Arch Biochem Biophys. 1990; 282(2):239-43.
by the effect of Triton. Heerklotz H, Szadkowska H, Anderson T, Se- 143. On the mechanism of bacteriorhodopsin solubilization by surfactants.
elig J. J Mol Biol. 2003; 329(4):793-9. Del Río E, González-Mañas JM, Gurtubay JI, Goñi FM. Arch Biochem
128. In situ imaging of detergent-resistant membranes by atomic force Biophys. 1991; 291(2):300-6.
microscopy. Giocondi MC, Vié V, Lesniewska E, Goudonnet JP, Le Gri- 144. The role of amphiphiles in model and cell membrane fusion. Prado
mellec C. J Struct Biol. 2000; 131(1):38-43. A, Partearroyo MA, Nieva JL, Alonso A, Goñi FM. Prog Clin Biol Res.
129. Insolubility of lipids in triton X-100: physical origin and relationship 1990; 343:103-16.
to sphingolipid/cholesterol membrane domains (rafts). London E, 145. Surfactant enhancement of polyethyleneglycol-induced cell fusion.
Brown DA. Biochim Biophys Acta. 2000; 1508(1-2):182-95.
130. Resistance of cell membranes to different detergents. Schuck S,
Honsho M, Ekroos K, Shevchenko A, Simons K. Proc Natl Acad Sci
U S A. 2003; 100(10):5795-800.
131. Insights into the association of FcgammaRII and TCR with deter-
gent-resistant membrane domains: isolation of the domains in de-
Detergentes: de los principios físicos a las aplicaciones 95
biofarmacéuticas (o por qué prevenimos la covid-19 con agua y jabón)
Félix M. Goñi y Alicia Alonso
An. Real Acad. Farm. Vol. 87. Nº1 (2021) · pp. 53 - 96