Page 97 - 87_01
P. 97

ANALES                                                                              tergent-free density gradients facilitates membrane fragment re-
RANF                                                                                constitution. Korzeniowski M, Kwiatkowska K, Sobota A. Bioche-
                                                                                    mistry. 2003; 42(18):5358-67.
  www.analesranf.com                                                           132. Location is everything: lipid rafts and immune cell signaling. Dykstra
                                                                                    M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK. Annu Rev Immunol.
     Rose JK. Cell. 1992; 68(3):533-44.                                             2003; 21:457-81.
119. Both sphingolipids and cholesterol participate in the detergent in-       133. Triton X-100 solubilization of mitochondrial inner and outer mem-
                                                                                    branes. Gurtubay JI, Goñi FM, Gómez-Fernández JC, Otamendi JJ,
     solubility of alkaline phosphatase, a glycosylphosphatidylinositol-            Macarulla JM. J Bioenerg Biomembr. 1980; 12(1-2):47-70.
     anchored protein, in mammalian membranes. Hanada K, Nishijima             134. Effect of the nonionic detergent Triton X-100 on mitochondrial suc-
     M, Akamatsu Y, Pagano RE. J Biol Chem. 1995; 270(11):6254-                     cinate- oxidizing enzymes. Barbero MC, Valpuesta JM, Rial E, Gur-
     60.                                                                            tubay JI, Goñi FM, Macarulla JM. Arch Biochem Biophys. 1984;
120. The differential miscibility of lipids as the basis for the formation of       228(2):560-8.
     functional membrane rafts. Rietveld A, Simons K. Biochim Biophys          135. Physiological state of submitochondrial particles and their suscep-
     Acta. 1998; 1376(3):467-79.                                                    tibility to Triton X-100. Goñi FM, Valpuesta JM, Barbero MC, Rial E,
121. Permeability and integrity properties of lecithin-sphingomyelin li-            Gurtubay JI, Macarulla JM. Experientia. 1984; 40(2):193-5.
     posomes. Hertz R, Barenholz Y. Chem Phys Lipids. 1975;15(2):138-          136. Protein--lipid interactions. A study of (Ca2+-Mg2+)ATPase re-
     56.                                                                            constituted with synthetic phospholipids. Gómez-Fernández JC, Goñi
122. Interaction of cholesterol with sphingomyelin in mixed membranes               FM, Bach D, Restall C, Chapman D. FEBS Lett. 1979; 98(2):224-
     containing phosphatidylcholine, studied by spin-label ESR and IR               8.
     spectroscopies. A possible stabilization of gel-phase sphingolipid        137. A comparative study of the effect of various detergents on the struc-
     domains by cholesterol. Veiga MP, Arrondo JL, Goñi FM, Alonso A,               ture and function of sarcoplasmic reticulum vesicles. Villalaín J, Goñi
     Marsh D. Biochemistry. 2001;40(8):2614-22.                                     FM, Macarulla JM. Mol Cell Biochem. 1982; 49(2):113-8.
123. Effect of the structure of natural sterols and sphingolipids on the for-  138. Membrane-surfactant interactions. The effect of Triton X-100 on sar-
     mation of ordered sphingolipid/sterol domains (rafts). Comparison              coplasmic reticulum vesicles. Prado A, Arrondo JL, Villena A, Goñi
     of cholesterol to plant, fungal, and disease-associated sterols and            FM, Macarulla JM. Biochim Biophys Acta. 1983; 733(1):163-71.
     comparison of sphingomyelin, cerebrosides, and ceramide. Xu X,            139. Solubilization of sarcoplasmic reticulum membranes by sodium do-
     Bittman R, Duportail G, Heissler D, Vilcheze C, London E. J Biol               decylsulphate. A Fourier-transform infrared spectroscopic study.
     Chem. 2001; 276(36):33540-6.                                                   Prado A, Muga A, Castresana J, Goñi FM, Arrondo JL. FEBS Lett.
124. Cholesterol–phospholipid interactions, the liquid-ordered phase and            1990; 269(2):324-7.
     lipid rafts in model and biological membranes. McMullen TP, Lewis         140. Interaction of membrane proteins and lipids with solubilizing de-
     RN, McElhaney RN. Curr. Opin. Colloid Interface Sci. 2004; 8: 459–             tergents. le Maire M, Champeil P, Moller JV. Biochim Biophys Acta.
     468.                                                                           2000; 1508(1-2):86-111.
125. Lipid/detergent interaction thermodynamics as a function of mole-         141. The interaction of Triton X-100 with purple membranes. Detergent
     cular shape. Heerklotz H, Binder H, Lantzsch G, Klose G, Blume A.              binding, spectral changes and membrane solubilization. González-
     J. Phys. Chem. B 1997; 101, 639–645.                                           Mañas JM, Virto MD, Gurtubay JI, Goñi FM. Eur J Biochem. 1990;
126. The interaction of phosphatidylcholine bilayers with Triton X-100.             188(3):673-8.
     Goñi FM, Urbaneja MA, Arrondo JL, Alonso A, Durrani AA, Chapman           142. Kinetics of purple membrane dark-adaptation in the presence of Tri-
     D. Eur J Biochem. 1986; 160(3):659-65.                                         ton X-100. González-Mañas JM, Goñi FM, Tribout M, Paredes S.
127. The sensitivity of lipid domains to small perturbations demonstrated           Arch Biochem Biophys. 1990; 282(2):239-43.
     by the effect of Triton. Heerklotz H, Szadkowska H, Anderson T, Se-       143. On the mechanism of bacteriorhodopsin solubilization by surfactants.
     elig J. J Mol Biol. 2003; 329(4):793-9.                                        Del Río E, González-Mañas JM, Gurtubay JI, Goñi FM. Arch Biochem
128. In situ imaging of detergent-resistant membranes by atomic force               Biophys. 1991; 291(2):300-6.
     microscopy. Giocondi MC, Vié V, Lesniewska E, Goudonnet JP, Le Gri-       144. The role of amphiphiles in model and cell membrane fusion. Prado
     mellec C. J Struct Biol. 2000; 131(1):38-43.                                   A, Partearroyo MA, Nieva JL, Alonso A, Goñi FM. Prog Clin Biol Res.
129. Insolubility of lipids in triton X-100: physical origin and relationship       1990; 343:103-16.
     to sphingolipid/cholesterol membrane domains (rafts). London E,           145. Surfactant enhancement of polyethyleneglycol-induced cell fusion.
     Brown DA. Biochim Biophys Acta. 2000; 1508(1-2):182-95.
130. Resistance of cell membranes to different detergents. Schuck S,
     Honsho M, Ekroos K, Shevchenko A, Simons K. Proc Natl Acad Sci
     U S A. 2003; 100(10):5795-800.
131. Insights into the association of FcgammaRII and TCR with deter-
     gent-resistant membrane domains: isolation of the domains in de-

                                                                                                 Detergentes: de los principios físicos a las aplicaciones               95
                                                                               biofarmacéuticas (o por qué prevenimos la covid-19 con agua y jabón)

                                                                                                                                          Félix M. Goñi y Alicia Alonso
                                                                                                           An. Real Acad. Farm. Vol. 87. Nº1 (2021) · pp. 53 - 96
   92   93   94   95   96   97   98   99   100   101   102