Page 95 - 87_01
P. 95
ANALES 1990; 12(3 Pt 2):149S-153S; discussion 153S-154S.
RANF 73. Binding of a nonionic detergent to membranes: flip-flop rate and
www.analesranf.com location on the bilayer. Le Maire M, Møller JV, Champeil P. Bioche-
mistry. 1987; 26(15):4803-10.
by detergents differing in polar head group and alkyl chain length. 74. Influence of the level of ceramides on the permeability of stratum
Pantaler E, Kamp D, Haest CW. Biochim Biophys Acta. corneum lipid liposomes caused by a C12-betaine/sodium dodecyl
2000;1509(1-2):397-408. sulfate mixture. Cócera M, Lopez O, Coderch L, Parra JL, de la Maza
59. Vesicle-micelle transition of phosphatidylcholine and octyl glucoside A. Int J Pharm. 1999; 183(2):165-73.
elucidated by cryo-transmission electron microscopy. Vinson PK, Tal- 75. Membrane stress and permeabilization induced by asymmetric in-
mon Y, Walter A. Biophys J. 1989; 56(4):669-81. corporation of compounds. Heerklotz H. Biophys J. 2001;
60. Structural phase transitions involved in the interaction of phospho- 81(1):184-95.
lipid bilayers with octyl glucoside. De la Maza A, Parra JL. Eur J Bio- 76. Solubilization of lipid bilayers by myristyl sucrose ester: effect of
chem. 1994; 226(3):1029-38. cholesterol and phospholipid headgroup size. Toro C, Sanchez SA,
61. 'Detergent-like' permeabilization of anionic lipid vesicles by melittin. Zanocco A, Lemp E, Gratton E, Günther G. Chem Phys Lipids. 2009;
Ladokhin AS, White SH. Biochim Biophys Acta. 2001; 1514(2):253- 157(2):104-12.
60. 77. Solubilization mechanism of vesicles by surfactants: effect of hydro-
62. Solubilization of phospholipid bilayers by surfactants belonging to phobicity. Lin CM, Chang GP, Sheng YJ. J. Chem. Phys. 2011;
the Triton X series: effect of polar group size. Partearroyo MA, Alonso 135:045102.
A, Goñi FM , Tribout M, Paredes S. J. Colloid Interface Sci. 1996; 78. Phase boundaries in mixtures of membrane-forming amphiphiles
178:156–159. and micelle- forming amphiphiles. Lichtenberg D, Opatowski E, Koz-
63. Triton X-100-resistant bilayers: effect of lipid composition and re- lov MM. Biochim Biophys Acta. 2000; 1508(1-2):1-19.
levance to the raft phenomenon. Sot J, Collado MI, Arrondo JLR , 79. States of aggregation and phase transformations in mixtures of phos-
Alonso A, and Goñi FM. Langmuir 2002; 18:2828–2835. phatidylcholine and octyl glucoside. Almog S, Litman BJ, Wimley
64. Loading of preformed liposomes with high trapping efficiency by de- W, Cohen J, Wachtel EJ, Barenholz Y, Ben-Shaul A, Lichtenberg D.
tergent- induced formation of transient membrane holes. Schubert Biochemistry. 1990; 29(19):4582-92.
R, Wolburg H, Schmidt KH, Roth HJ. Chem Phys Lipids. 1991; 80. Lysis and reassembly of sonicated lecithin vesicles in the presence
58:121-129. of Triton X-100. Alonso A, Villena A, Goñi FM. FEBS Lett. 1981;
65. Early and delayed stages in the solubilization of purple membrane 123(2):200-4.
by a polyoxyethylenic surfactant. Viguera AR, González-Mañas JM, 81. Increase in size of sonicated phospholipid vesicles in the presence
Taneva S, Goñi FM. Biochim Biophys Acta. 1994; 1196(1):76-80. of detergents. Alonso A, Sáez R, Villena A, Goñi FM. J Membr Biol.
66. Interaction of detergents with lipid vesicles. Lasch J. Biochim Biophys 1982; 67(1):55-62.
Acta. 1995; 1241(2):269-92. 82. Effect of calcium on kinetic and structural aspects of dilution-induced
67. Titration calorimetry of surfactant-membrane partitioning and mem- micellar to lamellar phase transformation in phosphatidylcholine-
brane solubilization. Heerklotz H, Seelig J. Biochim Biophys Acta. cholate mixtures. Almog S, Lichtenberg D. Biochemistry. 1988;
2000; 1508(1-2):69-85. 27(3):873-80.
68. Kinetic studies on the interaction of phosphatidylcholine liposomes 83. Structural characterization of the micelle-vesicle transition in leci-
with Triton X-100. Alonso A, Urbaneja MA, Goñi FM, Carmona FG, thin-bile salt solutions. Long MA, Kaler EW, Lee SP. Biophys J. 1994;
Cánovas FG, Gómez- Fernández JC. Biochim Biophys Acta. 1987; 67(4):1733-42.
902(2):237-46. 84. Size disproportionation in vesicular dispersions. Johnson NW, Kaler
69. The effect of cholesterol on the solubilization of phosphatidylcholine EW. J. Colloid Interface Sci. 1987; 116:444–457.
bilayers by the non-ionic surfactant Triton X-100. Schnitzer E, Kozlov 85. The vesicle-to-micelle transformation of phospholipid-cholate mixed
MM, Lichtenberg D. Chem Phys Lipids. 2005; 135(1):69-82. aggregates: a state of the art analysis including membrane curvature
70. Cholesterol precipitation from cholesterol-supersaturated bile models. effects. Elsayed MM, Cevc G. Biochim Biophys Acta. 2011;
Fudim- Levin A, Bor A, Kaplun A, Talmon Y, Lichtenberg D. Biochim 1808(1):140-53.
Biophys Acta 1995; 1259(1):23-8. 86. Use of simple kinetic and reaction-order measurements for the eva-
71. Stability of mixed micellar bile models supersaturated with choles- luation of the mechanism of surfactant-liposome interactions. Velluto
terol. Lichtenberg D, Ragimova S, Bor A, Almog S, Vinkler C, Kalina D, Gasbarri C, Fontana A. J. Phys. Chem. B. 2011; 115:8130–
M, Peled Y, Halpern Z. Biophys J. 1988; 54(6):1013-25.
72. Stability of mixed micellar systems made by solubilizing phospha-
tidylcholine- cholesterol vesicles by bile salts. Lichtenberg D, Ragi-
mova S, Bor A, Almog S, Vinkler C, Peled Y, Halpern Z. Hepatology.
Detergentes: de los principios físicos a las aplicaciones 93
biofarmacéuticas (o por qué prevenimos la covid-19 con agua y jabón)
Félix M. Goñi y Alicia Alonso
An. Real Acad. Farm. Vol. 87. Nº1 (2021) · pp. 53 - 96