Page 96 - 87_01
P. 96

8137.                                                                                                                      ANALES
87. From discoid micelles to spherical vesicles. The concept of edge ac-                                                            RANF

     tivity. Fromherz P, Rocker C, Ruppel D. Faraday Discuss. Chem. Soc.                                                                        www.analesranf.com
     1986; 81:39–48.
88. A molecular model for vesicle formation. Lasic DD. Biochim Biophys           J Phys Chem B. 2011; 115(2):269-77.
     Acta. 1982; 692(3):501-2.                                              102. Detergent solubilisation of phospholipid bilayers in the gel state:
89. The mechanism of vesicle formation. Lasic DD. Biochem. J. 1988;
     256:1-11.                                                                   the role of polar and hydrophobic forces. Patra SK, Alonso A, Goñi
90. Solubilization of phospholipids by detergents. Structural and kinetic        FM. Biochim Biophys Acta. 1998; 1373(1):112-8.
     aspects. Lichtenberg D, Robson RJ, Dennis EA. Biochim Biophys Acta.    103. Liposomes containing sphingomyelin and cholesterol: detergent so-
     1983; 737(2):285-304.                                                       lubilisation and infrared spectroscopic studies. Patra SK, Arrondo JL,
91. Effects of Triton X-100 on sonicated lecithin vesicles. Edwards K,           Alonso A, Goni FM. J. Liposome Res. 1999; 9, 247–260.
     Almgren M, Brown W. Langmuir. 1989; 5:473–478.                         104. Solubilization of supported lipid membranes by octyl glucoside ob-
92. Curvature factor and membrane solubilization, with particular refe-          served by time-lapse atomic force microscopy. Morandat S, El Kirat
     rence to membrane rafts. Mrówczynska L, Salzer U, Iglic A, Hä-              K. Colloids Surf. B: Biointerfaces 2007; 55, 179–184.
     gerstrand H. Cell Biol Int. 2011 Oct;35(10):991-5.                     105. Triton promotes domain formation in lipid raft mixtures. Heerklotz
93. Surfactant effects of chlorpromazine and imipramine on lipid bilayers        H. Biophys J. 2002; 83(5):2693-701.
     containing sphingomyelin and cholesterol. Ahyayauch H, Requero         106. Cholesterol homeostasis and the escape tendency (activity) of plasma
     MA, Goni FM. J. Colloid Interface Sci. 2002; 256:284–289.                   membrane cholesterol. Lange Y, Steck TL. Prog Lipid Res. 2008;
94. Structural changes induced by Triton X-100 on sonicated phospha-             47(5):319-32.
     tidylcholine liposomes. Urbaneja MA, Goñi FM, Alonso A. Eur J Bio-     107. Sphingomyelin and cholesterol: from membrane biophysics and rafts
     chem. 1988; 173(3):585-8.                                                   to potential medical applications. Barenholz Y. Subcell Biochem.
95. Solubilization of liposomes by sodium dodecyl sulfate: new mecha-            2004; 37:167-215.
     nism based on the direct formation of mixed micelles. López O, Keller  108. Temperature dependence of Triton X-100 micelle size and hydration.
     M, Wehrli E, Parra JL, de la Maza A. Arch Biochem Biophys. 1999;            Streletzky K, Phillies GD. Langmuir 1995; 11, 42–47.
     367(2):153-60.                                                         109. Size and shape of detergent micelles determined by small-angle X-
96. Process of destruction of large unilamellar vesicles by a zwitterionic       ray scattering. Lipfert J, Columbus L, Chu VB, Lesley SA, Doniach S.
     detergent, CHAPS: partition behavior between membrane and water             J Phys Chem B. 2007; 111(43):12427-38.
     phases. Viriyaroj A, Kashiwagi H, Ueno M. Chem Pharm Bull (Tokyo).     110. Functional rafts in cell membranes. Simons K, Ikonen E. Nature.
     2005; 53(9):1140-6.                                                         1997; 387(6633):569-72.
97. Thermodynamics of sodium dodecyl sulfate partitioning into lipid        111. Model systems, lipid rafts, and cell membranes. Simons K, Vaz WL.
     membranes. Tan A, Ziegler A, Steinbauer B, Seelig J. Biophys J.             Annu Rev. Biophys Biomol Struct. 2004;33:269-95.
     2002; 83(3):1547-56.                                                   112. Lipid rafts and signal transduction. Simons K, Toomre D. Nat Rev
98. Reconstitution in liposome bilayers enhances nucleotide binding af-          Mol Cell Biol. 2000; 1(1):31-9.
     finity and ATP-specificity of TrwB conjugative coupling protein. Ve-   113. Association of GAP-43 with detergent-resistant membranes requires
     cino AJ, Segura RL, Ugarte- Uribe B, Aguila S, Hormaeche I, de la           two palmitoylated cysteine residues. Arni S, Keilbaugh SA, Oster-
     Cruz F, Goñi FM, Alkorta I. Biochim Biophys Acta. 2010;                     meyer AG, Brown DA. J Biol Chem. 1998; 273(43):28478-85.
     1798(11):2160-9.                                                       114. Phase equilibria in the phosphatidylcholine-cholesterol system. Ipsen
99. Membrane solubilization by detergent: use of brominated phospho-             JH, Karlström G, Mouritsen OG, Wennerström H, Zuckermann MJ.
     lipids to evaluate the detergent-induced changes in Ca2+-                   Biochim Biophys Acta. 1987; 905(1):162-72.
     ATPase/lipid interaction. De Foresta B, le Maire M, Orlowski S,        115. Interaction of influenza virus haemagglutinin with sphingolipid-cho-
     Champeil P, Lund S, Møller JV, Michelangeli F, Lee AG. Biochemistry.        lesterol membrane domains via its transmembrane domain. Scheif-
     1989; 28(6):2558-67.                                                        fele P, Roth MG, Simons K. EMBO J. 1997;16(18):5501-8.
100. Membrane-perturbing effect of fatty acids and lysolipids. Arouri A,    116. Selective solubilization of proteins and phospholipids from red blood
     Mouritsen OG. Prog Lipid Res. 2013; 52(1):130-40.                           cell membranes by nonionic detergents. Yu J, Fischman DA, Steck
101. Observing the solubilization of lipid bilayers by detergents with op-       TL. J Supramol Struct. 1973; 1(3):233-48.
     tical microscopy of GUVs. Sudbrack TP, Archilha NL, Itri R, Riske KA.  117. Ectoenzymes of the kidney microvillar membrane. Differential solu-
                                                                                 bilization by detergents can predict a glycosyl-phosphatidylinositol
                                                                                 membrane anchor. Hooper NM, Turner AJ. Biochem J. 1988;
                                                                                 250(3):865-9.
                                                                            118. Sorting of GPI-anchored proteins to glycolipid-enriched membrane
                                                                                 subdomains during transport to the apical cell surface. Brown DA,

         Detergents: from physical principles to biopharmaceutical

94 applications (or why we fight covid-19 with toilet soap)
         Félix M. Goñi y Alicia Alonso
        An. Real Acad. Farm. Vol. 87. Nº1 (2021) · pp. 53 - 96
   91   92   93   94   95   96   97   98   99   100   101