Page 94 - 87_01
P. 94
thods and results. Ruiz J, Goñi FM, Alonso A. Biochim Biophys Acta. ANALES
1988; 937(1):127-34. RANF
31. Intermediate structures in the cholate-phosphatidylcholine vesicle-
micelle transition. Walter A, Vinson PK, Kaplun A, Talmon Y. Biophys www.analesranf.com
J. 1991; 60(6):1315-25.
32. Structural and kinetic studies on the solubilization of lecithin by so- 2000; 1508(1-2):146-63.
dium deoxycholate. Lichtenberg D, Zilberman Y, Greenzaid P, Zamir 45. Solubilization of lecithin vesicles by C12E8-structural transitions and
S. Biochemistry. 1979;18(16):3517-25.
33. Detergent-phospholipid mixed micelles with a crystalline phospho- temperature effects. Edwards K, and Almgren M. J. Colloid Interface
lipid core. Funari SS, Nuscher B, Rapp G, Beyer K. Proc Natl Acad Sci. 1991; 147:1–21.
Sci U S A. 2001;98(16):8938-43. 46. Intermediate structures in the cholate-phosphatidylcholine vesicle-
34. Formation of Polymerlike Mixed Micelles and Vesicles in Lecithin- micelle transition. Walter A, Vinson PK, Kaplun A, Talmon Y. Biophys
Bile Salt Solutions: A Small-Angle Neutron-Scattering Study. Pe- J. 1991; 60(6):1315-25.
dersen JS, Egelhaf SU, Schurtenberger P. J. Phys. Chem. 1995; 99, 47. Studies on the molecular packing of mixed dispersions of Triton X-
1299–1305. 100 and sphingomyelin and its dependence on temperature and
35. Phase behavior of dilute aqueous solutions of lipid–surfactant mix- cloud point. Lichtenberg D, Yedgar S, Cooper G, Gatt S. Biochemistry.
tures: effects of finite size of micelles.Roth Y, Opatowski E, Lichten- 1979; 18(12):2574-82.
berg D, Kozlov MM. Langmuir 2000; 16:2052-2061. 48. Lipid bilayers in the gel phase become saturated by Triton X-100 at
36. Shape of phospholipid/surfactant mixed micelles: cylinders or disks? lower surfactant concentrations than those in the fluid phase. Ah-
Theoretical analysis. Kozlov MM, Lichtenberg D, Andelman D. J. yayauch H, Collado MI, Alonso A, Goñi FM. Biophys J. 2012;
Phys. Chem. B 1997; 101:6600–6606. 102(11):2510-6.
37. Phase transitions between vesicles and micelles driven by competing 49. Phosphorus NMR analysis of phospholipids in detergents. London
curvature. Andelman D, Kozlov MM, Helfrich, W. Europhys. Lett. E, Feigenson GW. J Lipid Res. 1979; 20(3):408-12.
1994; 25:231–236. 50. Cholesterol reverts Triton X-100 preferential solubilization of sphin-
38. Phase boundaries in mixtures of membrane-forming amphiphiles gomyelin over phosphatidylcholine: a 31P-NMR study. Ahyayauch
and micelle- forming amphiphiles. Lichtenberg D, Opatowski E, Koz- H, Collado MI, Goñi FM, Lichtenberg D. FEBS Lett.
lov MM. Biochim Biophys Acta. 2000; 1508(1-2):1-19. 2009;583(17):2859-64.
39. Intrinsic Curvature-Mediated Transbilayer Coupling in Asymmetric Lipid 51. Thermodynamics of lipid membrane solubilization by sodium dodecyl
Vesicles. Eicher B, Marquardt D, Heberle FA, Letofsky-Papst I, Rech- sulfate. Keller S, Heerklotz H, Jahnke N, Blume A. Biophys J. 2006;
berger GN, Appavou MS, Katsaras J, Pabst G. Biophys J. 90(12):4509-21.
2018;114(1):146-157. 52. Triton X-100 partitioning into sphingomyelin bilayers at subsolubi-
40. Micelle to vesicle transition in aqueous solutions of bile salts and lizing detergent concentrations: effect of lipid phase and a compa-
lecithin. Schurtenberger P, Mazer NA, Kanzig W. J. Phys. Chem. rison with dipalmitoylphosphatidylcholine. Arnulphi C, Sot J,
1985; 89:1042–1059. García-Pacios M, Arrondo JL, Alonso A, Goñi FM. Biophys J. 2007;
41. Temperature-dependence of the solubilization of dipalmitoyl phos- 93(10):3504-14.
phatidylcholine (DPPC) by the non-ionic surfactant Triton X-100, ki- 53. The heat of transfer of lipid and surfactant from vesicles into micelles
netic and structural aspects. Schnitzer E, Lichtenberg D, Kozlov MM. in mixtures of phospholipid and surfactant. Opatowski E, Lichtenberg
Chem Phys Lipids. 2003; 126(1):55-76. D, Kozlov MM. Biophys J. 1997; 73(3):1458-67.
42. The mechanism of detergent solubilization of liposomes and protein- 54. Partitioning of octyl glucoside between octyl glucoside/phospha-
containing membranes. Kragh-Hansen U, le Maire M, Møller JV. tidylcholine mixed aggregates and aqueous media as studied by
Biophys J. 1998; 75(6):2932-46. isothermal titration calorimetry. Opatowski E, Kozlov MM, Lichten-
43. Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle berg D. Biophys J. 1997; 73(3):1448-57.
transition are mediated by the packing parameter of phospholipid- 55. Titration calorimetry of surfactant-membrane partitioning and mem-
detergent systems. Stuart MC, Boekema EJ. Biochim Biophys Acta. brane solubilization. Heerklotz H, Seelig J. Biochim Biophys Acta.
2007; 1768(11):2681-9. 2000; 1508(1-2):69-85.
44. Mixed micelles and other structures in the solubilization of bilayer 56. Detergent effects on membranes at subsolubilizing concentrations:
lipid membranes by surfactants. Almgren M. Biochim Biophys Acta. transmembrane lipid motion, bilayer permeabilization, and vesicle
lysis/reassembly are independent phenomena. Ahyayauch H, Ben-
nouna M, Alonso A, Goñi FM. Langmuir. 2010; 26(10):7307-13.
57. Classifying surfactants with respect to their effect on lipid membrane
order. Nazari M, Kurdi M, Heerklotz H. Biophys J. 2012;
102(3):498-506.
58. Acceleration of phospholipid flip-flop in the erythrocyte membrane
Detergents: from physical principles to biopharmaceutical
92 applications (or why we fight covid-19 with toilet soap)
Félix M. Goñi y Alicia Alonso
An. Real Acad. Farm. Vol. 87. Nº1 (2021) · pp. 53 - 96