Page 94 - 87_01
P. 94

thods and results. Ruiz J, Goñi FM, Alonso A. Biochim Biophys Acta.                                                          ANALES
     1988; 937(1):127-34.                                                                                                             RANF
31. Intermediate structures in the cholate-phosphatidylcholine vesicle-
     micelle transition. Walter A, Vinson PK, Kaplun A, Talmon Y. Biophys                                                                         www.analesranf.com
     J. 1991; 60(6):1315-25.
32. Structural and kinetic studies on the solubilization of lecithin by so-        2000; 1508(1-2):146-63.
     dium deoxycholate. Lichtenberg D, Zilberman Y, Greenzaid P, Zamir        45. Solubilization of lecithin vesicles by C12E8-structural transitions and
     S. Biochemistry. 1979;18(16):3517-25.
33. Detergent-phospholipid mixed micelles with a crystalline phospho-              temperature effects. Edwards K, and Almgren M. J. Colloid Interface
     lipid core. Funari SS, Nuscher B, Rapp G, Beyer K. Proc Natl Acad             Sci. 1991; 147:1–21.
     Sci U S A. 2001;98(16):8938-43.                                          46. Intermediate structures in the cholate-phosphatidylcholine vesicle-
34. Formation of Polymerlike Mixed Micelles and Vesicles in Lecithin-              micelle transition. Walter A, Vinson PK, Kaplun A, Talmon Y. Biophys
     Bile Salt Solutions: A Small-Angle Neutron-Scattering Study. Pe-              J. 1991; 60(6):1315-25.
     dersen JS, Egelhaf SU, Schurtenberger P. J. Phys. Chem. 1995; 99,        47. Studies on the molecular packing of mixed dispersions of Triton X-
     1299–1305.                                                                    100 and sphingomyelin and its dependence on temperature and
35. Phase behavior of dilute aqueous solutions of lipid–surfactant mix-            cloud point. Lichtenberg D, Yedgar S, Cooper G, Gatt S. Biochemistry.
     tures: effects of finite size of micelles.Roth Y, Opatowski E, Lichten-       1979; 18(12):2574-82.
     berg D, Kozlov MM. Langmuir 2000; 16:2052-2061.                          48. Lipid bilayers in the gel phase become saturated by Triton X-100 at
36. Shape of phospholipid/surfactant mixed micelles: cylinders or disks?           lower surfactant concentrations than those in the fluid phase. Ah-
     Theoretical analysis. Kozlov MM, Lichtenberg D, Andelman D. J.                yayauch H, Collado MI, Alonso A, Goñi FM. Biophys J. 2012;
     Phys. Chem. B 1997; 101:6600–6606.                                            102(11):2510-6.
37. Phase transitions between vesicles and micelles driven by competing       49. Phosphorus NMR analysis of phospholipids in detergents. London
     curvature. Andelman D, Kozlov MM, Helfrich, W. Europhys. Lett.                E, Feigenson GW. J Lipid Res. 1979; 20(3):408-12.
     1994; 25:231–236.                                                        50. Cholesterol reverts Triton X-100 preferential solubilization of sphin-
38. Phase boundaries in mixtures of membrane-forming amphiphiles                   gomyelin over phosphatidylcholine: a 31P-NMR study. Ahyayauch
     and micelle- forming amphiphiles. Lichtenberg D, Opatowski E, Koz-            H, Collado MI, Goñi FM, Lichtenberg D. FEBS Lett.
     lov MM. Biochim Biophys Acta. 2000; 1508(1-2):1-19.                           2009;583(17):2859-64.
39. Intrinsic Curvature-Mediated Transbilayer Coupling in Asymmetric Lipid    51. Thermodynamics of lipid membrane solubilization by sodium dodecyl
     Vesicles. Eicher B, Marquardt D, Heberle FA, Letofsky-Papst I, Rech-          sulfate. Keller S, Heerklotz H, Jahnke N, Blume A. Biophys J. 2006;
     berger GN, Appavou MS, Katsaras J, Pabst G. Biophys J.                        90(12):4509-21.
     2018;114(1):146-157.                                                     52. Triton X-100 partitioning into sphingomyelin bilayers at subsolubi-
40. Micelle to vesicle transition in aqueous solutions of bile salts and           lizing detergent concentrations: effect of lipid phase and a compa-
     lecithin. Schurtenberger P, Mazer NA, Kanzig W. J. Phys. Chem.                rison with dipalmitoylphosphatidylcholine. Arnulphi C, Sot J,
     1985; 89:1042–1059.                                                           García-Pacios M, Arrondo JL, Alonso A, Goñi FM. Biophys J. 2007;
41. Temperature-dependence of the solubilization of dipalmitoyl phos-              93(10):3504-14.
     phatidylcholine (DPPC) by the non-ionic surfactant Triton X-100, ki-     53. The heat of transfer of lipid and surfactant from vesicles into micelles
     netic and structural aspects. Schnitzer E, Lichtenberg D, Kozlov MM.          in mixtures of phospholipid and surfactant. Opatowski E, Lichtenberg
     Chem Phys Lipids. 2003; 126(1):55-76.                                         D, Kozlov MM. Biophys J. 1997; 73(3):1458-67.
42. The mechanism of detergent solubilization of liposomes and protein-       54. Partitioning of octyl glucoside between octyl glucoside/phospha-
     containing membranes. Kragh-Hansen U, le Maire M, Møller JV.                  tidylcholine mixed aggregates and aqueous media as studied by
     Biophys J. 1998; 75(6):2932-46.                                               isothermal titration calorimetry. Opatowski E, Kozlov MM, Lichten-
43. Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle           berg D. Biophys J. 1997; 73(3):1448-57.
     transition are mediated by the packing parameter of phospholipid-        55. Titration calorimetry of surfactant-membrane partitioning and mem-
     detergent systems. Stuart MC, Boekema EJ. Biochim Biophys Acta.               brane solubilization. Heerklotz H, Seelig J. Biochim Biophys Acta.
     2007; 1768(11):2681-9.                                                        2000; 1508(1-2):69-85.
44. Mixed micelles and other structures in the solubilization of bilayer      56. Detergent effects on membranes at subsolubilizing concentrations:
     lipid membranes by surfactants. Almgren M. Biochim Biophys Acta.              transmembrane lipid motion, bilayer permeabilization, and vesicle
                                                                                   lysis/reassembly are independent phenomena. Ahyayauch H, Ben-
                                                                                   nouna M, Alonso A, Goñi FM. Langmuir. 2010; 26(10):7307-13.
                                                                              57. Classifying surfactants with respect to their effect on lipid membrane
                                                                                   order. Nazari M, Kurdi M, Heerklotz H. Biophys J. 2012;
                                                                                   102(3):498-506.
                                                                              58. Acceleration of phospholipid flip-flop in the erythrocyte membrane

         Detergents: from physical principles to biopharmaceutical

92 applications (or why we fight covid-19 with toilet soap)
         Félix M. Goñi y Alicia Alonso
        An. Real Acad. Farm. Vol. 87. Nº1 (2021) · pp. 53 - 96
   89   90   91   92   93   94   95   96   97   98   99