Page 86 - 77_04
P. 86

J.	
  M.	
  ZAPICO	
  	
  y	
  col.	
  

	
  

8.	
  Binker,	
  M.G.,	
  &	
  al.	
  (2009).	
  EGF	
  promotes	
  invasion	
  by	
  PANC-­-1	
  cells	
  through	
  Racl/ROS-­-	
  dependent	
  
    secretion	
   and	
   activation	
   of	
   MMP-­-2.	
   Biochemical	
   and	
   Biophysical	
   Research	
   Communications,	
  
    379(2),	
  445-­-450.	
  	
  

9.	
   Overall,	
   C.M.,	
   &	
   O.	
   Kleifeld	
   (2006).	
   Tumour	
   microenvironment	
   -­-	
   Opinion	
   -­-	
   Validating	
   matrix	
  
    metalloproteinases	
  as	
  drug	
  targets	
  and	
  anti-­-targets	
  for	
  cancer	
  therapy.	
  Nature	
  Reviews	
  Cancer,	
  
    6(3),	
  227-­-239.	
  	
  

10.	
   Xi,	
   L.,	
   &	
   al.	
   (2009).	
   A	
   combined	
   molecular	
   modeling	
   study	
   on	
   gelatinases	
   and	
   their	
   potent	
  
    inhibitors.	
  Journal	
  of	
  Computational	
  Chemistry,	
  31(1),	
  24-­-42.	
  	
  

11.	
   Summers,	
   J.B.	
   (1998).	
   in	
   Annual	
   Reports	
   in	
   Medicinal	
   Chemistry,	
   33,	
   D.	
   Robertson	
   and	
   J.	
  
    Plattner,	
  Editors,	
  Academic	
  Press:	
  San	
  Diego,	
  131-­-149.	
  	
  

12.	
   Terp,	
   G.E.,	
   &	
   al.	
   (2000).	
   Structural	
   differences	
   of	
   matrix	
   metalloproteinases.	
   Homology	
  
    modeling	
   and	
   energy	
   minimization	
   of	
   enzyme-­-substrate	
   complexes.	
   Journal	
   of	
   Biomolecular	
  
    Structure	
  &	
  Dynamics,	
  17(6),	
  933-­-946.	
  	
  

13.	
   Bode,	
   W.,	
   &	
   al.	
   (1999).	
   Structural	
   properties	
   of	
   matrix	
   metalloproteinases.	
   Cellular	
   and	
  
    Molecular	
  Life	
  Sciences:	
  CMLS,	
  55(4),	
  639-­-652.	
  	
  

14.	
   Natchus,	
   M.G.,	
   &	
   al.	
   (2000).	
   Development	
   of	
   new	
   hydroxamate	
   matrix	
   metalloproteinase	
  
    inhibitors	
   derived	
   from	
   functionalized	
   4-­-aminoprolines.	
   Journal	
   of	
   Medicinal	
   Chemistry,	
  
    43(26),	
  4948-­-63.	
  	
  

15.	
   Scozzafava,	
   A.,	
   &	
   al.	
   (2000).	
   Protease	
   inhibitors:	
   Synthesis	
   of	
   potent	
   bacterial	
   collagenase	
   and	
  
    matrix	
   metalloproteinase	
   inhibitors	
   incorporating	
   N-­-4-­-	
   nitrobenzylsulfonylglycine	
  
    hydroxamate	
  moieties.	
  Journal	
  of	
  Medicinal	
  Chemistry,	
  43(9),	
  1858-­-1865.	
  	
  

16.	
  Almstead,	
  N.G.,	
  &	
  al.	
  (1999).	
  Design,	
  synthesis,	
  and	
  biological	
  evaluation	
  of	
  potent	
  thiazine-­-	
  and	
  
    thiazepine-­-based	
   matrix	
   metalloproteinase	
   inhibitors.	
   Journal	
   of	
   Medicinal	
   Chemistry,	
   42(22),	
  
    4547-­-4562.	
  	
  

17.	
  Pikul,	
  S.,	
  &	
  al.	
  (1998).	
  Discovery	
  of	
  potent,	
  achiral	
  matrix	
  metalloproteinase	
  inhibitors.	
  Journal	
  
    of	
  Medicinal	
  Chemistry,	
  41(19),	
  3568-­-71.	
  	
  

18.	
   Kessenbrock.,	
   K,	
   &	
   al.	
   (2010).	
   Matrix	
   Metalloproteinases:	
   Regulators	
   of	
   the	
   Tumor	
  
    Microenvironment.	
  Cell,	
  141(1),	
  52-­-67.	
  	
  

19.	
   Tuccinardi,	
   T.,	
   &	
   al.	
   (2006).	
   Amber	
   force	
   field	
   implementation,	
   molecular	
   modelling	
   study,	
  
    synthesis	
   and	
   MMP-­-1/MMP-­-2	
   inhibition	
   profile	
   of	
   (R)	
   and	
   (S)-­-N-­-hydroxy-­-2-­-(N-­-	
  
    isopropoxybiphenyl-­-4-­-ylsulfonamido)-­-3-­-methylbutanamid	
   es.	
   Bioorganic	
   &	
   Medicinal	
  
    Chemistry,	
  14(12),	
  4260-­-4276.	
  	
  

20.	
   Martin,	
   M.D.,	
   &	
   al.	
   (2007).	
   The	
   other	
   side	
   of	
   MMPs:	
   Protective	
   roles	
   in	
   tumor	
   progression.	
  
    Cancer	
  and	
  Metastasis	
  Reviews,	
  26(3-­-4),	
  717-­-724.	
  	
  

21.	
   Almholt,	
   K.,	
   &	
   al.	
   (2008).	
   Metastasis	
   is	
   strongly	
   reduced	
   by	
   the	
   matrix	
   metalloproteinase	
  
    inhibitor	
   Galardin	
   in	
   the	
   MMTV-­-PymT	
   transgenic	
   breast	
   cancer	
   model.	
   Molecular	
   Cancer	
  
    Therapeutics,	
  7(9),	
  2758-­-2767.	
  	
  

22.	
   Dashevsky.,	
   O,	
   &	
   al.	
   (2009).	
   Platelet-­-derived	
   microparticles	
   promote	
   invasiveness	
   of	
   prostate	
  
    cancer	
   cells	
   via	
   upregulation	
   of	
   MMP-­-2	
   production.	
   International	
   Journal	
   of	
   Cancer,	
   124(8),	
  
    1773-­-1777.	
  	
  

23.	
  Pfaffen,	
  S.,	
  &	
  al.	
  (2010).	
  Isolation	
  and	
  characterization	
  of	
  human	
  monoclonal	
  antibodies	
  specific	
  
    to	
  MMP-­-1A,	
  MMP-­-2	
  and	
  MMP-­-3.	
  Experimental	
  Cell	
  Research,	
  316(5),	
  836-­-847.	
  	
  

24.	
   Whittaker.,	
   M,	
   &	
   al.	
   (1999).	
   Design	
   and	
   therapeutic	
   application	
   of	
   matrix	
   metalloproteinase	
  
    inhibitors.	
  Chemical	
  Reviews,	
  99(9),	
  2735-­-2776.

25.	
   Becker,	
   D.,	
   &	
   al.	
   (2005).	
   Synthesis	
   and	
   structure-­-activity	
   relationships	
   of	
   beta-­-	
   and	
   alpha-­-	
  
    piperidine	
   sulfone	
   hydroxamic	
   acid	
   matrix	
   metalloproteinase	
   inhibitors	
   with	
   oral	
   antitumor	
  
    efficacy.	
  Journal	
  of	
  Medicinal	
  Chemistry,	
  48(21),	
  6713-­-6730.

116	
  

	
  
   81   82   83   84   85   86   87   88   89   90   91