Page 86 - 77_04
P. 86
J.
M.
ZAPICO
y
col.
8.
Binker,
M.G.,
&
al.
(2009).
EGF
promotes
invasion
by
PANC--1
cells
through
Racl/ROS--
dependent
secretion
and
activation
of
MMP--2.
Biochemical
and
Biophysical
Research
Communications,
379(2),
445--450.
9.
Overall,
C.M.,
&
O.
Kleifeld
(2006).
Tumour
microenvironment
--
Opinion
--
Validating
matrix
metalloproteinases
as
drug
targets
and
anti--targets
for
cancer
therapy.
Nature
Reviews
Cancer,
6(3),
227--239.
10.
Xi,
L.,
&
al.
(2009).
A
combined
molecular
modeling
study
on
gelatinases
and
their
potent
inhibitors.
Journal
of
Computational
Chemistry,
31(1),
24--42.
11.
Summers,
J.B.
(1998).
in
Annual
Reports
in
Medicinal
Chemistry,
33,
D.
Robertson
and
J.
Plattner,
Editors,
Academic
Press:
San
Diego,
131--149.
12.
Terp,
G.E.,
&
al.
(2000).
Structural
differences
of
matrix
metalloproteinases.
Homology
modeling
and
energy
minimization
of
enzyme--substrate
complexes.
Journal
of
Biomolecular
Structure
&
Dynamics,
17(6),
933--946.
13.
Bode,
W.,
&
al.
(1999).
Structural
properties
of
matrix
metalloproteinases.
Cellular
and
Molecular
Life
Sciences:
CMLS,
55(4),
639--652.
14.
Natchus,
M.G.,
&
al.
(2000).
Development
of
new
hydroxamate
matrix
metalloproteinase
inhibitors
derived
from
functionalized
4--aminoprolines.
Journal
of
Medicinal
Chemistry,
43(26),
4948--63.
15.
Scozzafava,
A.,
&
al.
(2000).
Protease
inhibitors:
Synthesis
of
potent
bacterial
collagenase
and
matrix
metalloproteinase
inhibitors
incorporating
N--4--
nitrobenzylsulfonylglycine
hydroxamate
moieties.
Journal
of
Medicinal
Chemistry,
43(9),
1858--1865.
16.
Almstead,
N.G.,
&
al.
(1999).
Design,
synthesis,
and
biological
evaluation
of
potent
thiazine--
and
thiazepine--based
matrix
metalloproteinase
inhibitors.
Journal
of
Medicinal
Chemistry,
42(22),
4547--4562.
17.
Pikul,
S.,
&
al.
(1998).
Discovery
of
potent,
achiral
matrix
metalloproteinase
inhibitors.
Journal
of
Medicinal
Chemistry,
41(19),
3568--71.
18.
Kessenbrock.,
K,
&
al.
(2010).
Matrix
Metalloproteinases:
Regulators
of
the
Tumor
Microenvironment.
Cell,
141(1),
52--67.
19.
Tuccinardi,
T.,
&
al.
(2006).
Amber
force
field
implementation,
molecular
modelling
study,
synthesis
and
MMP--1/MMP--2
inhibition
profile
of
(R)
and
(S)--N--hydroxy--2--(N--
isopropoxybiphenyl--4--ylsulfonamido)--3--methylbutanamid
es.
Bioorganic
&
Medicinal
Chemistry,
14(12),
4260--4276.
20.
Martin,
M.D.,
&
al.
(2007).
The
other
side
of
MMPs:
Protective
roles
in
tumor
progression.
Cancer
and
Metastasis
Reviews,
26(3--4),
717--724.
21.
Almholt,
K.,
&
al.
(2008).
Metastasis
is
strongly
reduced
by
the
matrix
metalloproteinase
inhibitor
Galardin
in
the
MMTV--PymT
transgenic
breast
cancer
model.
Molecular
Cancer
Therapeutics,
7(9),
2758--2767.
22.
Dashevsky.,
O,
&
al.
(2009).
Platelet--derived
microparticles
promote
invasiveness
of
prostate
cancer
cells
via
upregulation
of
MMP--2
production.
International
Journal
of
Cancer,
124(8),
1773--1777.
23.
Pfaffen,
S.,
&
al.
(2010).
Isolation
and
characterization
of
human
monoclonal
antibodies
specific
to
MMP--1A,
MMP--2
and
MMP--3.
Experimental
Cell
Research,
316(5),
836--847.
24.
Whittaker.,
M,
&
al.
(1999).
Design
and
therapeutic
application
of
matrix
metalloproteinase
inhibitors.
Chemical
Reviews,
99(9),
2735--2776.
25.
Becker,
D.,
&
al.
(2005).
Synthesis
and
structure--activity
relationships
of
beta--
and
alpha--
piperidine
sulfone
hydroxamic
acid
matrix
metalloproteinase
inhibitors
with
oral
antitumor
efficacy.
Journal
of
Medicinal
Chemistry,
48(21),
6713--6730.
116