Page 90 - 83_04
P. 90

14. Perutz MF, Rossmann MG, Cullis AF, Muirhead H,                                  José María Valpuesta, José L. Carrascosa
     Will G, North AC. Structure of haemoglobin: a three-
     dimensional Fourier synthesis at 5.5-A. resolution,      30. Klug A, De Rosier DJ. Optical filtering of electron
     obtained by X-ray analysis. Nature 1960; 185: 416-22.         micrographs: reconstruction of one-sided images.
                                                                   Nature 1966; 212: 29-32.
15. Johnson LN, Phillips DC. Structure of some crystalline
     lysozyme-inhibitor complexes determined by X-ray         31. De Rosier DJ, Klug A. Reconstruction of three
     analysis at 6 Angstrom resolution. Nature 1965; 206:          dimensional structures from electron micrographs.
     761-3.                                                        Nature 1968; 217: 130-4.

16. Watson JD, Crick FH. Molecular structure of nucleic       32. Lepault J, Booy FP, Dubochet J. Electron microscopy
     acids; a structure for deoxyribose nucleic acid. Nature       of frozen biological suspensions. J Microsc. 1981;
     1953;171: 737-8.                                              129: 89-102.

17. Watson JD, Crick FH. Genetical implications of the        33. Henderson R, Raeburn C, Vigers G. A side-entry cold
     structure of deoxyribonucleic acid. Nature 1953;171:          holder for cryo-electron microscopy. Ultramicroscopy
     964-7.                                                        1991; 35: 45-53.

18. Wagner G, Wüthrich K. Amide protein exchange and          34. Henderson R, Unwin PN. Three-dimensional model of
     surface conformation of the basic pancreatic trypsin          purple membrane obtained by electron microscopy.
     inhibitor in solution. Studies with two-dimensional           Nature 1975; 257: 28-32.
     nuclear magnetic resonance. J Mol Biol. 1982;
     160:343-61.                                              35. Henderson R, Baldwin JM, Ceska TA, Zemlin F,
                                                                   Beckmann E, Downing KH. Model for the structure of
19. Ruska E. Nobel lecture. The development of the                 bacteriorhodopsin based on high-resolution electron
     electron microscope and of electron microscopy.               cryo-microscopy. J Mol Biol. 1990; 213: 899-929.
     Biosci Rep. 1987; 7: 607-29.
                                                              36. Frank J. Averaging of low-exposure electron
20. Ruska H, Poppe K, Kausche GA.                                  micrographs of non-periodic objects. Ultramicroscopy
     Elektronenmikroskopische Untersuchungen zur                   1975; 1: 159–62
     Morphologie der Seiffertschen Mikroorganismen und
     des Erregers der Lungenseuche des Rindes. Z Hyg          37. Faruqi AR, Cattermole DM, Henderson R, Mikulec B,
     Infektionskr. 1947; 127: 201-15.                              Raeburn C. Evaluation of a hybrid pixel detector for
                                                                   electron microscopy. Ultramicroscopy 2003; 94: 263-
21. Amos LA, Henderson R, Unwin PN. Three-                         76.
     dimensional structure determination by electron
     microscopy of two-dimensional crystals. Prog             38. Scheres SH, Valle M, Nuñez R, Sorzano CO, Marabini
     Biophys Mol Biol. 1982; 39: 183-231.                          R, Herman GT, Carazo JM. Maximum-likelihood
                                                                   multi-reference refinement for electron microscopy
22. Williams RC, Wyckoff RWG. Electron shadow                      images. J Mol Biol. 2005; 348; 139-49.
     micrograph of the tobacco mosaic virus protein.
     Science 1945, 101: 594-6.                                39. Scheres SH. RELION: implementation of a Bayesian
                                                                   approach to cryo-EM structure determination. J Struct
23. Pearse DC, Baker RF. Sectioning techniques for                 Biol. 2012; 180: 519-30.
     electron microscopy using a conventional microtome.
     Proc. Soc. Exptl. Biol. Med 1948; 67: 470-74.            40. Banerjee S, Bartesaghi A, Merk A, Rao P, Bulfer SL,
                                                                   Yan Y, Green N, Mroczkowski B, Neitz RJ, Wipf P,
24. Brenner S, Horne RW. A negative staining method for            Falconieri V, Deshaies RJ, Milne JL, Huryn D, Arkin
     high resolution electron microscopy of viruses.               M, Subramaniam S. 2.3 Å resolution cryo-EM
     Biochim. Biophys. Acta 1959; 34: 103-10.                      structure of human p97 and mechanism of allosteric
                                                                   inhibition. Science 2016; 351: 871-5.
25. Palade GE, Claude A. The nature of the Golgi
     apparatus; parallelism between intercellular myelin      41. Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X,
     figures and Golgi apparatus in somatic cells. J               Milne JL, Subramaniam S. 2.2 Å resolution cryo-EM
     Morphol. 1949; 85: 35-69.                                     structure of ß-galactosidase in complex with a cell-
                                                                   permeant inhibitor. Science 2015; 348: 1147-51.
26. De Duve C. The separation and characterization of
     subcellular particles. Harvey Lect. 1965; 59: 49-87.     42. Beck M, Baumeister W. Cryo-Electron Tomography:
                                                                   Can it Reveal the Molecular Sociology of Cells in
27. Hodge AJ, Huxley HE, Spiro D. Electron microscope              Atomic Detail? Trends Cell Biol. 2016; 26: 825-837.
     studies on ultrathin sections of muscle. J Exp Med.
     1954; 99: 201-6.                                                  @Real Academia Nacional de Farmacia. Spain

28. Caspar DL, Klug A. Physical principles in the
     construction of regular viruses. Cold Spring Harb
     Symp Quant Biol. 1962; 27: 1-24.

29. Klug A, Berger JE. An optical method for the analysis
     of periodicities in electron micrographs, and some
     observations on the mechanism of negative staining. J
     Mol Biol. 1964; 10: 565-9.

    464
   85   86   87   88   89   90   91   92   93   94   95