Page 65 - 77_04
P. 65
G.
LOLLO
ET
AL.
7.
Danhier,
F.,
&
al.
(2010).
To
exploit
the
tumor
microenvironment:
Passive
&
active
tumor
targeting
of
nanocarriers
for
anti--cancer
drug
delivery.
Journal
of
Controlled
Release,
148(2),
135--146.
8.
Owens
Iii,
D.E.,
&
al.
(2006).
Opsonization,
biodistribution,
&
pharmacokinetics
of
polymeric
nanoparticles.
International
Journal
of
Pharmaceutics,
307(1),
93--102.
9.
Gabizon,
A.,
&
al.
(1992).
The
role
of
surface
charge
&
hydrophilic
groups
on
liposome
clearance
in
vivo.
Biochimica
&
Biophysica
Acta
(BBA)
--
Biomembranes,
1103(1),
94--100.
10.
Howard,
M.D.,
&
al.
(2008).
PEGylation
of
nanocarrier
drug
delivery
systems:
State
of
the
art.
Journal
of
Biomedical
Nanotechnology,
4(2),
133--148.
11.
Molineux,
G.
(2002).
Pegylation:
engineering
improved
pharmaceuticals
for
enhanced
therapy.
Cancer
Treatment
Reviews,
28,
Supplement
1,
13--16.
12.
Vila--Jato,
J.
L.
(2009).
Nanotecnología
Farmacéutica:
Realidades
y
posibilidades
farmacoterapéuticas.
Monografías,
Madrid,
España:
Instituto
de
España,
Real
Academia
Nacional
de
Farmacia.
409.
13.
Byrne,
J.
D.,
&
al.
(2008).
Active
targeting
schemes
for
nanoparticle
systems
in
cancer
therapeutics.
Advanced
Drug
Delivery
Reviews,
60(15),
1615--1626.
14.
Wang,
M.
&
al.
(2010).
Targeting
nanoparticles
to
cancer.
Pharmacological
Research,
62(2),
90--99.
15.
Kalli,
K.R.,
&
al.
(2008).
Folate
receptor
alpha
as
a
tumor
target
in
epithelial
ovarian
cancer.
Gynecologic
Oncology,
108(3),
619--626.
16.
Oyarzun--Ampuero,
F.A.,
&
al.
(2011).
A
new
drug
nanocarrier
consisting
of
polyarginine
&
hyaluronic
acid.
European
Journal
of
Pharmaceutics
&
Biopharmaceutics,
79(1),
54--57.
17.
Mizrahy,
S.,
&
al.
(2011).
Hyaluronan--coated
nanoparticles:
The
influence
of
the
molecular
weight
on
CD44--hyaluronan
interactions
&
on
the
immune
response.
J
Control
Release,
156,
231--238.
18.
Schliemann,
C.,
&
al.
(2007).
Antibody--based
targeting
of
the
tumor
vasculature.
Biochimica
&
Biophysica
Acta
(BBA)
--
Reviews
on
Cancer,
1776(2),
175--192.
19.
Fay,
F.,
&
al.
(2011).
Antibody--targeted
nanoparticles
for
cancer
therapy.
Immunotherapy,
3(3),
381--394.
20.
Lian,
T.,
&
al.
(2001).
Trends
&
developments
in
liposome
drug
delivery
systems.
Journal
of
Pharmaceutical
Sciences,
90(6),
667--680.
21.
Malam,
Y.,
&
al.
(2009).
Liposomes
&
nanoparticles,
nanosized
vehicles
for
drug
delivery
in
cancer.
Trends
in
Pharmacological
Sciences,
30(11),
592--599.
22.
Martin,
F.
(2011).
Comparison
of
Liposomal
Doxorubicin
Products:
Myocet
Vs.
DOXIL.
Apples
to
Apples?
http://www.fda.gov/ohrms/dockets/ac/01/slides/3763s2_08_martin/sld001.htm.
23.
Yang,
F.,
&
al.
(2011).
Liposome
based
delivery
systems
in
pancreatic
cancer
treatment:
From
bench
to
bedside.
Cancer
Treatment
Reviews,
37(8),
633--642.
24.
Hervella,
V.,
&
al.
(2008).
Nanomedicine:
New
Challenges
&
Opportunities
in
Cancer
Therapy.
Journal
of
Biomedical
Nanotechnology,
4(3),
276--292.
25.
Gelderblom,
H.,
&
al.
(2001).
Cremophor
EL:
the
drawbacks
&
advantages
of
vehicle
selection
for
drug
formulation.
European
Journal
of
Cancer,
37(13),
1590--1598.
26.
Alexis,
F.,
&
al.
(2010).
Nanoparticle
Technologies
for
Cancer
Therapy
Drug
Delivery,
M.
Schäfer--Korting,
Editor
Springer
Berlin
Heidelberg.
55--86.
27.
Desai,
N.,
&
al.
(2009).
SPARC
Expression
Correlates
with
Tumor
Response
to
Albumin--Bound
Paclitaxel
in
Head
&
Neck
Cancer
Patients.
Translational
Oncology,
2(2),
59--64.
28.
Merle,
(2011).
Presentation
of
Livatag®
(BioAlliance
Pharma)
survival
results.
in
International
liver
cancer
congress.
Hong
Kong.
96