Page 123 - Demo
P. 123
28. (Soeiro, J. F.; Sousa, F. L.; Monteiro, M. V.; Gaspar, V. M.; Silva, N. J. O.; Mano,J. F. Advances in Screening Hyperthermic Nanomedicines in 3D Tumor Models.Nanoscale Horiz 2024, 9 (3), 334%u2013364. https://doi.org/10.1039/D3NH00305A.29. Cullion, K.; Petishnok, L. C.; Koo, H.; Harty, B.; Melero-Martin, J. M.; Kohane,D. S. Targeting Nanoparticles to Bioengineered Human Vascular Networks.Nano Lett 2021, 21 (15), 6609%u20136616. https://doi.org/10.1021/acs.nanolett.1c02027.30. Jasim, S. A.; Farber, I. M.; Noraldeen, S. A. M.; Bansal, P.; Alsaab, H. O.;Abdullaev, B.; Alkhafaji, A. T.; Alawadi, A. H.; Hamzah, H. F.; Mohammed,B. A. Incorporation of Immunotherapies and Nanomedicine to BetterNormalize Angiogenesis-Based Cancer Treatment. Microvasc Res 2024, 154,104691. https://doi.org/10.1016/j.mvr.2024.104691.31. Carter, E. P.; Roozitalab, R.; Gibson, S. V.; Grose, R. P. TumourMicroenvironment 3D-Modelling: Simplicity to Complexity and Back Again.Trends Cancer 2021, 7 (11), 1033%u20131046. https://doi.org/10.1016/j.trecan.2021.06.009.32. Kuczynski, E. A.; Vermeulen, P. B.; Pezzella, F.; Kerbel, R. S.; Reynolds, A. R.Vessel Co-Option in Cancer. Nat Rev Clin Oncol 2019, 16 (8), 469%u2013493.https://doi.org/10.1038/s41571-019-0181-9.33. Jain, R. K.; Di Tomaso, E.; Duda, D. G.; Loeffler, J. S.; Sorensen, A. G.;Batchelor, T. T. Angiogenesis in Brain Tumours. Nat Rev Neurosci 2007, 8 (8),610%u2013622. https://doi.org/10.1038/nrn2175.34. Chen, Y.; Ding, B. Sen. Comprehensive Review of the Vascular Niche inRegulating Organ Regeneration and Fibrosis. Stem Cells Transl Med 2022, 11(11), 1135%u20131142. https://doi.org/10.1093/stcltm/szac070.35. Fang, J.; Islam, W.; Maeda, H. Exploiting the Dynamics of the EPR Effect andStrategies to Improve the Therapeutic Effects of Nanomedicines by UsingEPR Effect Enhancers. Adv Drug Deliv Rev 2020, 157, 142%u2013160.https://doi.org/10.1016/j.addr.2020.06.005.36. Shilova, O. N.; Shilov, E. S.; Lieber, A.; Deyev, S. M. Disassembling a CancerPuzzle: Cell Junctions and Plasma Membrane as Targets for AnticancerTherapy. Journal of Controlled Release 2018, 286 (March), 125%u2013136.https://doi.org/10.1016/j.jconrel.2018.07.030.37. De Palma, M.; Biziato, D.; Petrova, T. V. Microenvironmental Regulation ofTumour Angiogenesis. Nat Rev Cancer 2017, 17 (8), 457%u2013474.https://doi.org/10.1038/nrc.2017.51.38. Multhaupt, H. A. B.; Leitinger, B.; Gullberg, D.; Couchman, J. R. ExtracellularMatrix Component Signaling in Cancer. Adv Drug Deliv Rev 2016, 97, 28%u201340.https://doi.org/10.1016/j.addr.2015.10.013.39. Naba, A.; Hynes, R. O.; Pearce, O. M. T. T.; Rajeeve, V.; Cutillas, P. R.; Balkwill,F. R.; Del Rosario, A.; Ma, D.; Ding, H.; Rajeeve, V.; Cutillas, P. R.; Balkwill,F. R.; Hynes, R. O. Characterization of the Extracellular Matrix of Normaland Diseased Tissues Using Proteomics. J Proteome Res 2017, 16 (8), 3083%u20133091. https://doi.org/10.1021/acs.jproteome.7b00191.40. Cox, T. R. The Matrix in Cancer. Nature Reviews Cancer. Nature Research April1, 2021, pp 217%u2013238. https://doi.org/10.1038/s41568-020-00329-7.121 Nanomaterial y NanomedicinaMar%u00eda Vallet , Antonio J. Salinas