Page 126 - Demo
P. 126
65. Zhang, I.; L%u00e9pine, P.; Han, C.; Lacalle-Aurioles, M.; Chen, C. X.-Q.; Haag, R.;Durcan, T. M.; Maysinger, D. Nanotherapeutic Modulation of Human NeuralCells and Glioblastoma in Organoids and Monocultures. Cells 2020, 9 (11),2434. https://doi.org/10.3390/cells9112434.66. Shahriar, S. M. S.; Andrabi, S. M.; Islam, F.; An, J. M.; Schindler, S. J.; Matis,M. P.; Lee, D. Y.; Lee, Y. Next-Generation 3D Scaffolds for Nano-BasedChemotherapeutics Delivery and Cancer Treatment. Pharmaceutics 2022, 14(12), 2712. https://doi.org/10.3390/pharmaceutics14122712.67. Viveros-Moreno, N. G.; Garcia-Lorenzana, M.; Pe%u00f1a-Mercado, E.; Garc%u00edaSanmart%u00edn, J.; Narro-%u00cd%u00f1iguez, J.; Salazar-Garc%u00eda, M.; Huerta-Yepez, S.;Sanchez-Gomez, C.; Mart%u00ednez, A.; Beltran-Vargas, N. E. in vivoBiocompatibility Testing of Nanoparticle-Functionalized Alginate%u2013ChitosanScaffolds for Tissue Engineering Applications. Front Bioeng Biotechnol 2023,11. https://doi.org/10.3389/fbioe.2023.1295626.68. Garc%u00eda-Astrain, C.; Henriksen-Lacey, M.; Lenzi, E.; Renero-Lecuna, C.; Langer,J.; Pi%u00f1eiro, P.; Molina-Mart%u00ednez, B.; Plou, J.; Jimenez de Aberasturi, D.; LizMarz%u00e1n, L. M. A Scaffold-Assisted 3D Cancer Cell Model for Surface-EnhancedRaman Scattering-Based Real-Time Sensing and Imaging. ACS Nano 2024, 18(17), 11257%u201311269. https://doi.org/10.1021/acsnano.4c00543.69. Bakhshi, A.; Pandey, A.; Kharaba, Z.; Razlansari, M.; Sargazi, S.; Behzadmehr,R.; Rahdar, A.; D%u00edez-Pascual, A. M.; Fathi-karkan, S. Microfluidic-BasedNanoplatforms for Cancer Theranostic Applications: A Mini-Review on RecentAdvancements. OpenNano 2024, 15, 100197.https://doi.org/10.1016/j.onano.2023.100197.70. (70) Wlodkowic, D.; Cooper, J. M. Tumors on Chips: Oncology MeetsMicrofluidics. Curr Opin Chem Biol 2010, 14 (5), 556%u2013567.https://doi.org/10.1016/j.cbpa.2010.08.016.71. Martins, A. M.; Brito, A.; Barbato, M. G.; Felici, A.; Reis, R. L.; Pires, R. A.;Pashkuleva, I.; Decuzzi, P. Efficacy of Molecular and Nano-Therapies on BrainTumor Models in Microfluidic Devices. Biomaterials Advances 2023, 144,213227. https://doi.org/10.1016/j.bioadv.2022.213227.72. Feiner-Gracia, N.; Glinkowska Mares, A.; Buzhor, M.; Rodriguez-Trujillo, R.;Samitier Marti, J.; Amir, R. J.; Pujals, S.; Albertazzi, L. Real-TimeRatiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-ona-Chip. ACS Appl Bio Mater 2021, 4 (1), 669%u2013681.https://doi.org/10.1021/acsabm.0c01209.73. Kalinowska, D.; Grabowska-Jadach, I.; Liwinska, M.; Drozd, M.; Pietrzak, M.;Dybko, A.; Brzozka, Z. Studies on Effectiveness of PTT on 3D Tumor Modelunder Microfluidic Conditions Using Aptamer-Modified Nanoshells. BiosensBioelectron 2019, 126, 214%u2013221.https://doi.org/10.1016/J.BIOS.2018.10.069.124Potential of 3D tumor models for nanotherapies pre-clinical screeningVitor M. Gaspar1, Jo%u00e3o F. Mano, et al.