Page 125 - Demo
P. 125


                                    53. Schultze, J. L.; Schmieder, A.; Goerdt, S. Macrophage Activation in HumanDiseases. Semin Immunol 2015, 27 (4), 249%u2013256.https://doi.org/10.1016/j.smim.2015.07.003.54. Leonard, F.; Curtis, L. T.; Ware, M. J.; Nosrat, T.; Liu, X.; Yokoi, K.; Frieboes,H. B.; Godin, B. Macrophage Polarization Contributes to the Anti-TumoralEfficacy of Mesoporous Nanovectors Loaded with Albumin-Bound Paclitaxel.Front Immunol 2017, 8 (JUN). https://doi.org/10.3389/fimmu.2017.00693.55. Foglietta, F.; Serpe, L.; Canaparo, R. The Effective Combination between 3DCancer Models and Stimuli-Responsive Nanoscale Drug Delivery Systems. Cells2021, 10 (12), 3295. https://doi.org/10.3390/cells10123295.56. Murar, M.; Pujals, S.; Albertazzi, L. Multivalent Effect of Peptide FunctionalizedPolymeric Nanoparticles towards Selective Prostate Cancer Targeting.Nanoscale Adv 2023, 5 (5), 1378%u20131385.https://doi.org/10.1039/D2NA00601D.57. Fang, C.; Bhattarai, N.; Sun, C.; Zhang, M. Functionalized Nanoparticles withLong-Term Stability in Biological Media. Small 2009, 5 (14), 1637%u20131641.https://doi.org/10.1002/smll.200801647.58. Zanoni, M.; Piccinini, F.; Arienti, C.; Zamagni, A.; Santi, S.; Polico, R.;Bevilacqua, A.; Tesei, A. 3D Tumor Spheroid Models for in vitro TherapeuticScreening: A Systematic Approach to Enhance the Biological Relevance ofData Obtained. Sci Rep 2016, 6 (1), 19103.https://doi.org/10.1038/srep19103.59. Parvathaneni, V.; Kulkarni, N. S.; Chauhan, G.; Shukla, S. K.; Elbatanony, R.;Patel, B.; Kunda, N. K.; Muth, A.; Gupta, V. Development of PharmaceuticallyScalable Inhaled Anti-Cancer Nanotherapy %u2013 Repurposing Amodiaquine forNon-Small Cell Lung Cancer (NSCLC). Materials Science and Engineering: C2020, 115, 111139. https://doi.org/10.1016/j.msec.2020.111139.60. Lee, J. M.; Park, D. Y.; Yang, L.; Kim, E.-J.; Ahrberg, C. D.; Lee, K.-B.; Chung,B. G. Generation of Uniform-Sized Multicellular Tumor Spheroids UsingHydrogel Microwells for Advanced Drug Screening. Sci Rep 2018, 8 (1), 17145.https://doi.org/10.1038/s41598-018-35216-7.61. Xu, H.; Jiao, D.; Liu, A.; Wu, K. Tumor Organoids: Applications in CancerModeling and Potentials in Precision Medicine. J Hematol Oncol 2022, 15 (1),58. https://doi.org/10.1186/s13045-022-01278-4.62. Rossi, G.; Manfrin, A.; Lutolf, M. P. Progress and Potential in Organoid Research.Nat Rev Genet 2018, 19 (11), 671%u2013687. https://doi.org/10.1038/s41576-018-0051-9.63. Xu, H.; Lyu, X.; Yi, M.; Zhao, W.; Song, Y.; Wu, K. Organoid Technology andApplications in Cancer Research. J Hematol Oncol 2018, 11 (1), 116.https://doi.org/10.1186/s13045-018-0662-9.64. McCarthy, B.; Cudykier, A.; Singh, R.; Levi-Polyachenko, N.; Soker, S.Semiconducting Polymer Nanoparticles for Photothermal Ablation ofColorectal Cancer Organoids. Scientific Reports 2021 11:1 2021, 11 (1), 1%u201312. https://doi.org/10.1038/s41598-021-81122-w.123 Nanomaterial y NanomedicinaMar%u00eda Vallet , Antonio J. Salinas
                                
   119   120   121   122   123   124   125   126   127   128   129