Page 124 - Demo
P. 124


                                    41. Mohammadi, H.; Sahai, E. Mechanisms and Impact of Altered TumourMechanics. Nat Cell Biol 2018, 20 (7), 766%u2013774.https://doi.org/10.1038/s41556-018-0131-2.42. Henke, E.; Nandigama, R.; Erg%u00fcn, S. Extracellular Matrix in the TumorMicroenvironment and Its Impact on Cancer Therapy. Front Mol Biosci 2020,6 (January), 1%u201324. https://doi.org/10.3389/fmolb.2019.00160.43. Nguyen, L. N. M.; Lin, Z. P.; Sindhwani, S.; MacMillan, P.; Mladjenovic, S. M.;Stordy, B.; Ngo, W.; Chan, W. C. W. The Exit of Nanoparticles from SolidTumours. Nat Mater 2023, No. April 2022. https://doi.org/10.1038/s41563-023-01630-0.44. Cassani, M.; Fernandes, S.; Pagliari, S.; Cavalieri, F.; Caruso, F.; Forte, G.Unraveling the Role of the Tumor Extracellular Matrix to Inform NanoparticleDesign for Nanomedicine. Advanced Science 2024.https://doi.org/10.1002/advs.202409898.45. Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.;Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat RevDrug Discov 2021, 20 (2), 101%u2013124. https://doi.org/10.1038/s41573-020-0090-8.46. Cabeza, L.; Perazzoli, G.; Pe%u00f1a, M.; Cepero, A.; Luque, C.; Melguizo, C.;Prados, J. Cancer Therapy Based on Extracellular Vesicles as Drug DeliveryVehicles. Journal of Controlled Release 2020, 327 (June), 296%u2013315.https://doi.org/10.1016/j.jconrel.2020.08.018.47. van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W. J. M. M.;Lammers, T. Smart Cancer Nanomedicine. Nat Nanotechnol 2019, 14 (11),1007%u20131017. https://doi.org/10.1038/s41565-019-0567-y.48. Matsuo, I.; Kimura-Yoshida, C. Extracellular Distribution of Diffusible GrowthFactors Controlled by Heparan Sulfate Proteoglycans during MammalianEmbryogenesis. Philosophical Transactions of the Royal Society B: BiologicalSciences 2014, 369 (1657). https://doi.org/10.1098/rstb.2013.0545.49. Chen, R.; Huang, L.; Hu, K. Natural Products Remodel Cancer-AssociatedFibroblasts in Desmoplastic Tumors. Acta Pharm Sin B 2020, 10 (11), 2140%u20132155. https://doi.org/10.1016/j.apsb.2020.04.005.50. Lu, Q.; Kou, D.; Lou, S.; Ashrafizadeh, M.; Aref, A. R.; Canadas, I.; Tian, Y.;Niu, X.; Wang, Y.; Torabian, P.; Wang, L.; Sethi, G.; Tergaonkar, V.; Tay, F.;Yuan, Z.; Han, P. Nanoparticles in Tumor Microenvironment Remodeling andCancer Immunotherapy. J Hematol Oncol 2024, 17 (1), 16.https://doi.org/10.1186/s13045-024-01535-8.51. Mandal, D.; Kushwaha, K.; Gupta, J. Emerging Nano-Strategies against TumourMicroenvironment (TME): A Review. OpenNano 2023, 9, 100112.https://doi.org/10.1016/j.onano.2022.100112.52. Dang, B.-T. N.; Duwa, R.; Lee, S.; Kwon, T. K.; Chang, J.-H.; Jeong, J.-H.; Yook,S. Targeting Tumor-Associated Macrophages with MannosylatedNanotherapeutics Delivering TLR7/8 Agonist Enhances CancerImmunotherapy. Journal of Controlled Release 2024, 372, 587%u2013608.https://doi.org/10.1016/j.jconrel.2024.06.062.122Potential of 3D tumor models for nanotherapies pre-clinical screeningVitor M. Gaspar1, Jo%u00e3o F. Mano, et al.
                                
   118   119   120   121   122   123   124   125   126   127   128