Page 34 - 87_04
P. 34
40. Li N, Chena J, Shi YP. Magnetic reduced graphene oxide functiona- ANALES
lized with ß-cyclodextrins magnetic solid-phase extraction adsor- RANF
bents for the determination of phytohormones in tomatoes coupled
with high performance liquid chromatography. J Chromatogr A 2016; www.analesranf.com
1441: 24 - 33.
52. Pang L, Zhou J, Tang J, Ng SC, Tang W. Evaluation of perphenylcar-
41 Li R, Jiang ZT, Wang RX. Solid Phase Extraction Combined Direct bamated cyclodextrin clicked chiral stationary phase for enantiose-
Spectrophotometric Determination of Brilliant Blue in Food Using parations in reversed phase high performance liquid
ß-Cyclodextrin Polymer. Food Anal Methods 2009; 2: 264 – 270. chromatography. J Chromatogr A 2014; 1363: 119 - 127.
42. Faraji H, Husain SW, Helalizadeh M. Determination of phenolic com- 53. Kucerová G, Procházková H, Kalíkova K, Tesarová E. Sulfobutyle-
pounds in environmental water samples after solid phase extraction ther-ß-cyclodextrin as a chiral selector for separation of amino acids
with ß-cyclodextrin-bonded silica particles coupled with a novel li- and dipeptides in chromatography. J Chromatogr A 2016; 1467:
quid-phase microextraction followed by gas chromatography-mass 356 - 362.
spectrometry J Sep Sci 2012; 35: 107 - 113.
54. Li L, Lurie IS. Regioisomeric and enantiomeric analyses of 24 de-
43. Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR. Rapid signer cathinones and phenethylamines using ultra high perfor-
removal of organic micropollutants from water by a porous ß-cyclo- mance liquid chromatography and capillary electrophoresis with
dextrin polymer. Nature 2016; 529: 190 - 194. added cyclodextrins. Foresnic Sci Int 2015; 254: 148-157.
44. Yang Y, Long Y, Cao Q, Li K, Liu F. Molecularly imprinted polymer 55. Tong S, Zhang H, Shen M, Ito Y, Yan J. Enantioseparation of man-
using ß-cyclodextrin as functional monomer for the efficient recog- delic acid derivatives by high performance liquid chromatography
nition of bilirubin. Anal Chim Acta 2008; 606: 92 - 97. with substituted ß-cyclodextrin as chiral mobile phase additive and
evaluation of inclusion complex formation. J Chromatogr B 2014;
45. Yongfeng K, Wuping D, Yan L, Junxia K, Jing X. Molecularly imprinted 962: 44 - 51.
polymers of allyl-ß-cyclodextrin and methacrylic acid for the solid-
phase extraction of phthalate. Carbohyd Polym 2012; 88: 459 - 56. Olives AI, González-Ruiz V, Martín MA. Sustainable and Eco-Friendly
464. Alternatives for Liquid Chromatographic Analysis. ACS Sustain Chem
Eng 2017; 5: 5618-5634.
46. Guo Y, Liang X, Wang Y, Liu Y, Zhu G, Gui W. Cyclodextrin-based
molecularly imprinted polymers for the efficient recognition of pyreth- 57. Dembek M, Bocian S. Pure water as a mobile phase in liquid chro-
roids in aqueous media. J Appl Polym Sci 2013; 128: 4014 - 4022. matography techniques. Trend Anal Chem 2020; 123: 115793
47. Surikumaran H, Mohamad S, Sarih NM. Molecular imprinted poly- 58. González-Ruiz V, Olives AI, Martín MA. SPE/RP-HPLC using C1 co-
mer of methacrylic acid functionalised ß-cyclodextrin for selective lumns: an environmentally friendly alternative to conventional re-
removal of 2,4-dichlorophenol. Int J Mol Sci 2014; 15: 6111 - verse-phase separations for quantitation of beta-carboline alkaloids
6136. in human serum samples. Anal Bioanal Chem 2011; 400: 395 –
401.
48. Ikai T, Okamoto Y. Structure control of polysaccharide derivatives for
efficient separation of enantiomers by chromatography. Chem Rev 59. León AG, Olives AI, del Castillo B, Martín MA. Influence of the pre-
2009; 109: 6077 - 6101. sence of methyl cyclodextrins in high-performance liquid chroma-
tography mobile phases on the separation of ß-carboline alkaloids.
49. Zhou J, Yang B, Tang J, Tang W. Cationic cyclodextrin clicked chiral J Chromatogr A 2008; 1192: 254 - 258.
stationary phase for versatile enantioseparations in high-perfor-
mance liquid chromatography. J Chromatogr A 2016; 1467: 169 60. González-Ruiz V, León AG, Olives AI, Martín MA, Menéndez JC. Eco-
– 177. friendly liquid chromatographic separations based on the use of
cyclodextrins as mobile phase additives. Green Chem 2011; 13: 115
50. Silva M, Pérez-Quintanilla D, Morante-Zarcero S, Sierra I, Marina - 126.
ML, Aturki Z, Fanali S. Ordered mesoporous silica functionalized with
ß-cyclodextrin derivative for stereoisomer separation of flavanones 61. S. Kawano, T. Kida, K. Miyawaki, Y. Noguchi, E. Kato, T. Nakano,
and flavanone glycosides by nano-liquid chromatography and ca- M. Akashi. Cyclodextrin polymers as highly effective adsorbents for
pillary electrochromatography. J Chromatogr A 2017; 1490: 166 - removal and recovery of polychlorobiphenyl (PCB) contaminants in
176. insulating oil. Environ Sci Technol 2014; 48: 8094 - 8100.
51. Yao X, Tan TTY, Wang Y. Thiol–ene click chemistry derived cationic 62. Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR. Rapid
cyclodextrin chiral stationary phase and its enhanced separation per- removal of organic micropollutants from water by a porous ß-cyclo-
formance in liquid chromatography. J Chromatogr A 2014; 1326: dextrin polymer. Nature 2016; 529: 190 - 194.
80 - 88.
63. Bhattarai B, Muruganandham M, Suri RPS. Development of high
Natural and synthetic cavitands: challenges and answers efficiency silica coated ß-cyclodextrin polymeric adsorbent for the
removal of emerging contaminants of concern from water. J Hazard
392 in chemistry and pharmaceutical technology Mater 2014; 273: 146 – 154.
María Antonia Martín Carmona
An. Real Acad. Farm. Vol. 87. Nº 4 (2021) · pp. 381-393