Page 157 - 80_02
P. 157

Detección	
  de	
  alérgenos	
  de	
  cacahuete…	
  

	
  
6.	
  REFERENCIAS	
  

     1. Hefle,	
   S.	
   Methods	
   for	
   detecting	
   peanuts	
   in	
   food.	
   Detecting	
   allergens	
   in	
   food;	
   Koppelman,	
  
          S.J.,	
  Hefle,	
  S.L.	
  Ed.;	
  Woodhead	
  Publising;	
  2006;	
  p	
  185-­-186.	
  

     2. Morisset,	
   M.;	
   Moneret-­-Vautrin,	
   D	
   A.;	
   Kanny,	
   G.;	
   Guenard,	
   L.;	
   Beaudouin,	
   E.;	
   Flabbee,	
   J.;	
  
          Hatahet,	
   R.	
   Thresholds	
   of	
   clinical	
   reactivity	
   to	
   milk,	
   peanut,	
   and	
   sesame	
   in	
  
          immunoglobulin	
   E-­-dependent	
   allergies:	
   evaluation	
   by	
   double-­-blind	
   or	
   single-­-blind	
  
          placebo-­-controlled	
  oral	
  challenges.	
  Clin.	
  Exp.	
  Allergy	
  33,	
  1046–1051	
  (2003).	
  

     3. Bock,	
   SA.;	
   Muñoz-­-Furlong,	
   A.;	
   Sampson,	
   HA.	
   Fatalities	
   due	
   to	
   anaphylactic	
   reactions	
   to	
  
          foods.	
  J.	
  Allergy	
  Clin.	
  Immun.	
  107,	
  191-­-193	
  (2001).	
  

     4. Pomés,	
   A.;	
   Helm,	
   RM.	
  ;	
   Bannon,	
   GA.	
  ;	
   Burks,	
   AW.	
  ;	
   Tsay,	
   A.;	
   Chapman,	
   MD.	
   Monitoring	
  
          peanut	
   allergen	
   in	
   food	
   products	
   by	
   measuring	
   Ara	
   h	
   1.	
   J.	
   Allergy	
   Clin.	
   Immun.	
   111,	
   640-­-
          645	
  (2003).	
  

     5. Stephan,	
   O.;	
   Vieths,	
   S.	
   Development	
   of	
   a	
   Real-­-Time	
   PCR	
   and	
   a	
   Sandwich	
   ELISA	
   for	
  
          Detection	
   of	
   Potentially	
   Allergenic	
   Trace	
   Amounts	
   of	
   Peanut	
   (Arachis	
   hypogaea)	
   in	
  
          Processed	
  Foods.	
  J.	
  Agr.	
  Food	
  Chem.	
  52,	
  3754–3760	
  (2004).	
  

     6. Zeleny,	
   R.;	
   Schimmel,	
   H.	
   Towards	
   comparability	
   of	
   ELISA	
   results	
   for	
   peanut	
   proteins	
   in	
  
          food:	
  A	
  feasibility	
  study.	
  Food	
  Chem.	
  123,	
  1343-­-1351	
  (2010).	
  

     7. Hird,	
   H.;	
   Lloyd,	
   J.;	
   Goodier,	
   R.;	
   Brown,	
   J.;	
   Reece,	
   P.	
   Detection	
   of	
   peanut	
   using	
   real-­-time	
  
          polymerase	
  chain	
  reaction.	
  Eur.	
  Food	
  Res.	
  Technol.	
  217,	
  265-­-268	
  (2003).	
  

     8. Watanabe,	
   T.;	
   Akiyama,	
   H.;	
   Maleki,	
   S.;	
   Yamakawa,	
   H.;	
   Iijima,	
   K.;	
   Yamazaki,	
   F.	
   A	
   specific	
  
          qualitative	
   detection	
   method	
   for	
   peanut	
   (Arachis	
   Hypogaea)	
   in	
   foods	
   using	
   polymerase	
  
          chain	
  reaction.	
  J.	
  Food	
  Biochem.	
  30,	
  215-­-233	
  (2006).	
  

     9. Lopez-­-Calleja,	
  IM.;	
  de	
  la	
  Cruz,	
  S.;	
  Pegels,	
  N.;	
  Gonzalez,	
  I.;	
  Garcia,	
  T.;	
  Martin,	
  R.	
  Development	
  
          of	
   a	
   real	
   time	
   PCR	
   assay	
   for	
   detection	
   of	
   allergenic	
   trace	
   amounts	
   of	
   peanut	
   (Arachis	
  
          hypogaea)	
  in	
  processed	
  foods.	
  Food	
  Control	
  30,	
  480-­-490	
  (2012).	
  

     10. Sun,	
  X.;	
  Guan,	
  L.;	
  Shan,	
  X.;	
  Zhang,	
  Y.;	
  Li,	
  Z.	
  Electrochemical	
  detection	
  of	
  peanut	
  allergen	
  Ara	
  
          h	
   1	
   using	
   a	
   sensitive	
   ADN	
   biosensor	
   based	
   on	
   stem-­-loop	
   probe.	
   J.	
   Agr.	
   Food	
   Chem.	
   60,	
  
          10979-­-10984	
  (2012).	
  

     11. Rubio	
   Retama,	
   J.;	
   Sanchez-­-Paniagua,	
   M.;	
   Hervas	
   Perez,	
   JP.;	
   Frutos	
   Cabanillas,	
   G.;	
   Lopez-­-
          Cabarcos,	
  E.;	
  Lopez-­-Ruiz,	
  B.	
  Biosensors	
  based	
  on	
  acrylic	
  microgels.	
  A	
  comparative	
  study	
  of	
  
          immobilized	
  glucose	
  oxidase	
  and	
  tyrosinase.	
  Biosens.	
  Bioelectron.	
  20,	
  2268-­-2275	
  (2005).	
  

     12. Alonso-­-Lomillo,	
   M.A.;	
   Dominguez-­-Renedo,	
   O.;	
   Ferreira-­-Goncalves,	
   L.;	
   Arcos-­-Martinez,	
   M.J.	
  
          Sensitive	
  enzyme-­-biosensor	
  based	
  on	
  screen-­-printed	
  electrodes	
  for	
  Ochratoxin	
  A.	
  Biosens.	
  
          Bioelectron.	
  25,	
  1333-­-1337	
  (2010)	
  

     13. Venturini	
   Uliana,	
   C.;	
   Olimpio	
   Tognolli,	
   J.;	
   Yamanaka,	
   H.	
   Application	
   of	
   Factorial	
   Design	
  
          Experiments	
   to	
   the	
   Development	
   of	
   a	
   Disposable	
   Amperometric	
   ADN	
   Biosensor.	
  
          Electroanal.	
  23,	
  2607–2615	
  (2011).	
  	
  

     14. Montgomery,	
  D.C;	
  Design	
  and	
  Analysis	
  of	
  Experiments;	
  John	
  Wiley	
  &	
  Sons,	
  United	
  States,	
  
          2009.	
  

     15. Hibbert,	
   DB.	
   Experimental	
   design	
   in	
   chromatography:	
   a	
   tutorial	
   review.	
  J.	
   Chromatogr.	
   B	
  
          910,	
  2-­-13	
  (2012).	
  

     16. Miranda-­-Castro,	
   R.;	
   Lobo-­-Castañón.,	
   MJ.;	
   Miranda-­-Ordieres,	
   AJ.;	
   Tuñón-­-Blanco,	
   P.	
   Stem-­-
          Loop	
   ADN	
   probes	
   for	
   the	
   voltammetric	
   determination	
   of	
   Legionella	
   pneumophila	
   on	
  
          disposable	
  screen-­-printed	
  gold	
  electrodes.	
  Electroanal.	
  21,	
  267-­-273	
  (2009).	
  

     17. Herne,	
   TM.;	
   Tarlov.	
   MJ.	
   Characterization	
   of	
   ADN	
   probes	
   immobilized	
   on	
   gold	
   surfaces.	
   J.	
  
          Am.	
  Chem.	
  Soc.	
  119,	
  8916-­-8920	
  (1997)	
  

     18. Pividori,	
  MI.;	
  Merkoci,	
  A.;	
  Alegret,	
  S.	
  Electrochemical	
  genosensor	
  design:	
  immobiliation	
  of	
  
          oligonucleotides	
   onto	
   transducer	
   surfaces	
   and	
   detection	
   methods.	
   Biosens.	
   Bioelectron.	
  
          15,	
  291-­-303	
  (2000).	
  

     19. Statgraphics	
   Centurion.	
   STATGRAPHICS®.	
   Version	
   XVI.	
   2012.	
   StatPoint	
   Technologies,	
  
          Inc.	
 w  ww.STATGRAPHICS.com	
  

     20. Del	
   Giallo,	
   M.L.;	
   Lucarelli,	
   F.;	
   Cosulich,	
   E.;	
   Pistarino,	
   E.;	
   Santamaria,	
   B.;	
   Marrazza,	
   G.;	
  
          Mascini,	
   M.	
   Steric	
   Factors	
   Controlling	
   the	
   Surface	
   Hybridization	
   of	
   PCR	
   Amplified	
  
          Sequences.	
  Anal.	
  Chem.	
  77,	
  6324-­-6330	
  (2005).	
  

     21. Basic	
  Local	
  Alignment	
  Search	
  Tool;	
  www.ncbi.nlm.nih.gov/BLAST	
  
     22. Zuker,	
  M.	
  Mfold	
  web	
  server	
  for	
  nucleic	
  acid	
  folding	
  and	
  hybridization	
  prediction.	
  Nucleic	
  

          Acids	
  Res.	
  31,	
  3406-­-3415	
  (2003).	
  

                                                                                                                            	
  391	
  

	
  
   152   153   154   155   156   157   158   159   160   161   162