Page 93 - 79_04
P. 93
José
Carlos
Menéndez,
Mercedes
Villacampa
8.
CONCLUSIONES
Aunque
existen
todavía
aspectos
sin
resolver,
la
aproximación
basada
en
el
incremento
de
la
actividad
de
las
incretinas
por
vías
directas
o
indirectas
constituye
una
de
las
vías
más
prometedoras
para
el
tratamiento
futuro
de
la
diabetes
de
tipo
2,
uno
de
los
mayores
problemas
sanitarios
a
los
que
se
enfrenta
la
sociedad
actual.
9.
REFERENCIAS
1. Verspohl,
E.
J.
(2012).
Novel
pharmacological
approaches
to
the
treatment
of
type
2
diabetes.
Pharmacol.
Rev.
64,
188–237.
2. Pandey,
R.;
Kumar,
N.;
Yadav,
M.;
Nagpal,
R.;
Jain,
S.;
Yadav,
M.
(2013).
Anti--diabetic
compounds
and
their
patent
information:
An
update.
Recent
Pat.
Inflamm.
Allergy
Drug
Discov.
7,
35--48.
3. Israili,
Z.
H.
(2011).
Advances
in
the
treatment
of
type
2
diabetes
mellitus.
Am.
J.
Ther.
18,
117--152.
4. Drucker,
D.
J.
The
web
site
devoted
to
the
study
of
the
glucagon--like
peptides,http://www.glucagon.com
(consultado
el
02--08--2013).
5. Kazakos,
K.
(2011).
Incretin
effect:
GLP--1,
GIP,
DPP4.
Diabet.
Res.
Clin.
Pr.
93S,
S32–S36.
6. Vahl,
T.
P.;
Paty,
B.
W.;
Fuller,
B.
D.;
Prigeon,
R.
L.;
D’Alessio,
D.
A.
(2003).
Effects
of
GLP--1--
(7–36)NH2,
GLP--1--(7–37),
and
GLP--1--(9–36)NH2
on
intravenous
glucose
tolerance
and
glucose--induced
insulin
secretion
in
healthy
humans.
J.
Clin.
Endocrinol.
Metabol.
88,
1772–1779.
7. Hanwell,
M.
D.;
Curtis,
D.
E.;
Lonie,
D.
C.;
Vandermeersch,
T.;
Zurek,
E.;
Hutchison,
G.
R.
(2012).
Avogadro:
an
advanced
semantic
chemical
editor,
visualization,
and
analysis
platform.
J.
Cheminformatics2012,
4:
17.
8. Sinclair,
E.
M.;
Drucker,
D.
J.
(2005).
Proglucagon--derived
peptides:
Mechanisms
of
action
and
therapeutic
potential.
Physiology
20,
357–365.
9. Drucker,
D.
J.
(2006).
The
biology
of
incretin
hormones.
Cell
Metabol.
3,
153–165
10. Elashoff,
M.;
Matveyenko,
A.
V.;
Gier,
B.;
Elashoff,
R.;
Butler,
P.
C.
(2011).
Pancreatitis,
pancreatic,
and
thyroid
cancer
with
Glucagon--Like
Peptide--1–based
therapies.
Gastroenterology
141,
150–156.
11. Cho,Y--
M.;
Merchant,
C.
E.;
Kieffer,
T.
J.
(2012).
Targeting
the
glucagon
receptor
family
for
diabetes
and
obesity
therapy.
Pharmacol.
Ther.
135,
247–278
12. Meier,
J.
J.
GLP--1
receptor
agonists
for
individualized
treatment
of
type
2
diabetes
mellitus
(2012).
Nat.
Rev.
Endocrinol.
8,
728--742.
13. Yi,
F.;
Li,
D.;
Ma,
W.;
Du,
Q.
(2013).
GLP--1
biology
and
GLP--1
based
antidiabetic
therapy.
J.
Chin.
Pharm.
Sci.,
22,
7--27.
14. Lorenz,
M.;
Evers,
A.;
Wagner,
M.
(2013).
Recent
progress
and
future
options
in
the
development
of
GLP--1
receptor
agonists
for
the
treatment
of
diabesity.
Bioorg.
Med.
Chem.
Lett.
23,
4011–4018.
15. Weber,
A.
E.
(2004).
Dipeptidyl
peptidase
IV
inhibitors
for
the
treatment
of
diabetes.
J.
Med.
Chem.
47,
4135--4141.
16. Chyan,
Y.
J.;
Chuang,
L.
M.
(2007).
Dipeptidyl
peptidase--IV
inhibitors:
An
evolving
treatment
for
type
2
diabetes
from
the
incretin
concept.
Rec.
Pat.
Endocr.
Metabol.
Immun.
Drug
Discov.
1,
15--24.
17. Pei,
Z.
From
the
bench
to
the
bedside:
Dipeptidyl
peptidase
IV
inhibitors,
a
new
class
of
oral
antihyperglycemic
agents.
Curr.
Opin.
Drug
Discov.
Devel.
11,
512--532.
18. Underwood,
C.
R.;
Garibay,
P.;
Knudsen,
L.
B.;
Hastrup,
S.;
Peters,
G.
H.;
Rudolph,
R.;
Reedtz--
Runge,
S.
(2010)
Crystal
structure
of
Glucagon--Like
Peptide--1
in
complex
with
the
extracellular
domain
of
the
Glucagon--Like
Peptide--1
receptor.
J.
Biol.
Chem.
285,
723–730.
19. Eng,
J.;
Kleinman,
W.
A.;
Singh,
L.;
Singh,
G.;
Raufman,
J.
P.
(1992).
Isolation
and
characterisation
of
exendin--4,
an
exendin--3
analogue,
from
Heloderma
suspectum
venom:
Further
evidence
for
an
exendin
receptor
on
dispersed
acini
from
guinea
pig
pancreas.
J.
Biol.
Chem.
267,
7402–7405.
610