Page 97 - 79_02
P. 97

Long-­-life	
  supplementation	
  with	
  atenolol…	
  	
  

	
  
        Docosahexahenoic	
  acid	
  (22:6n-­-3)	
  has	
  six	
  double	
  bonds	
  and	
  consequently	
  has	
  

five	
  bis-­-allylic	
  hydrogens	
  per	
  chain,	
  and	
  is	
  320-­-times	
  more	
  susceptible	
  to	
  ROS	
  attack	
  
than	
  oleic	
  acid	
  (18:1n-­-9),	
  which	
  is	
  consistent	
  with	
  the	
  strong	
  decrease	
  in	
  secondary	
  
protein	
  lipoperoxidation	
  observed	
  (lower	
  MDAL	
  and	
  CML	
  in	
  AT-­-treated	
  animals).	
  In	
  
our	
  case,	
  a	
  most	
  relevant	
  factor	
  that	
  contributed	
  to	
  decrease	
  the	
  DBI	
  and	
  PI	
  seems	
  to	
  
be	
   the	
   strong	
   decrease	
   in	
   ß-­-peroxisomal	
   lipoxidation	
   (estimated	
   as	
   the	
   22:6n-­-
3/24:6n-­-3	
  ratio)	
  in	
  the	
  atenolol	
  group.	
  The	
  main	
  function	
  of	
  this	
  process	
  seems	
  to	
  be	
  
the	
   partial	
   degradation	
   of	
   very-­-long	
   chain	
   fatty	
   acids,	
   producing	
   chain-­-shortened	
  
acyl-­-CoAs,	
   acetyl-­-CoA	
   and	
   NADH,	
   which	
   may	
   exit	
   from	
   peroxisomes	
   via	
   pores	
   that	
  
permit	
  the	
  influx	
  of	
  substrates	
  and	
  efflux	
  of	
  products	
  of	
  ß-­-oxidation.	
  These	
  substrates	
  
go	
  back	
  to	
  the	
  mitochondria	
  to	
  complete	
  the	
  fatty	
  acid	
  oxidation	
  process	
  (47).	
  

        The	
   decrease	
   in	
   DBI	
   and	
   PI	
   confers	
   higher	
   resistance	
   of	
   membranes	
   to	
   lipid	
  
peroxidation	
   and	
   lowers	
   lipoxidation-­-dependent	
   damage	
   to	
   macromolecules,	
   like	
  
proteins,	
   and	
   (likely)	
   mtDNA.	
   The	
   long-­-term	
   atenolol	
   treatment	
   was	
   able	
   to	
   very	
  
strongly	
  and	
  significantly	
  decrease	
  protein	
  oxidation	
  (GSA	
  and	
  AASA),	
  glycoxidation	
  
(CEL	
  and	
  CML)	
  and	
  lipoxidation	
  (CML	
  and	
  MDAL)	
  markers	
  in	
  both	
  tissues,	
  except	
  for	
  
CEL	
   in	
   SKM	
   which	
   also	
   showed	
   a	
   trend	
   to	
   decrease	
   that	
   did	
   not	
   reach	
   statistical	
  
significance.	
   Aging	
   is	
   known	
   to	
   increase	
   protein	
   oxidation	
   in	
   association	
   with	
   a	
  
functional	
  decline	
  of	
  proteasome	
  activity	
  (48)	
  whereas	
  decreases	
  in	
  protein	
  oxidation	
  
and	
   increases	
   in	
   the	
   catabolism	
   of	
   modified	
   proteins	
   have	
   been	
   described	
   in	
  
experimental	
   modifications	
   that	
   extend	
   longevity,	
   like	
   dietary	
   restriction	
   (49)	
   and	
  
methionine	
   restriction	
   (50,	
   33)	
   even	
   when	
   applied	
   to	
   old	
   animals	
   (51).	
   The	
  
decreased	
   fatty	
   acid	
   unsaturation	
   degree	
   most	
   likely	
   leads	
   to	
   a	
   lower	
   lipid-­-derived	
  
secondary	
  free	
  radical	
  formation,	
  decreased	
  specific	
  protein	
  oxidation	
  and	
  damage	
  to	
  
other	
   macromolecules	
   (52)	
   which	
   was	
   reflected,	
   in	
   our	
   case,	
   in	
   the	
   decrease	
   in	
  
protein	
  oxidation,	
  glycoxidation	
  and	
  lipoxidation,	
  as	
  well	
  as,	
  in	
  the	
  case	
  of	
  the	
  heart,	
  
mtDNA	
  oxidative	
  damage.	
  	
  

        The	
   molecular	
   mechanism	
   suggested	
   to	
   explain	
   these	
   changes	
   could	
   be	
   the	
  
following:	
   binding	
   of	
   hormones	
   and	
   neurotransmitters	
   to	
   ß-­-adrenergic	
   receptors	
  
activates	
  adenylate	
  cyclase	
  (AC)	
  increasing	
  cyclic	
  adenosine	
  monophosphate	
  (cAMP)	
  
and	
  then	
  protein	
  kinase	
  A	
  (PKA).	
  PKA	
  inhibits	
  Raf-­-1,	
  which,	
  in	
  turn,	
  stimulates	
  p-­-MEK	
  
and	
   p-­-ERK.	
   p-­-ERK	
   enters	
   the	
   nucleus,	
   where	
   it	
   can	
   modify	
   gene	
   expression	
   through	
  
the	
  action	
  of	
  many	
  different	
  molecules.	
  Because	
  AC	
  stimulates	
  PKA,	
  and	
  PKA	
  inhibits	
  
Raf-­-1,	
  an	
  increase	
  in	
  the	
  Raf/MEK/ERK	
  pathway	
  is	
  expected	
  when	
  AC	
  is	
  lacking	
  or	
  ß-­-
adrenergic	
  receptors	
  are	
  blocked.	
  In	
  agreement	
  with	
  this,	
  an	
  increase	
  in	
  p-­-MEK	
  and	
  
p-­-ERK	
   was	
   observed	
   in	
   tissues	
   of	
   AC5KO	
   mice,	
   including	
   the	
   heart	
   (1).	
   The	
   same	
  
happens	
   in	
   our	
   pharmacological	
   model	
   of	
   ß-­-adrenergic	
   blockade	
   by	
   atenolol,	
   in	
  
which	
  p-­-ERK	
  levels	
  were	
  increased	
  both	
  at	
  short-­-term	
  in	
  the	
  mice	
  heart	
  (2),	
  as	
  well	
  
as	
   in	
   the	
   present	
   study	
   after	
   long-­-life	
   AT	
   treatment	
   in	
   heart	
   and	
   SKM	
   mitochondria.	
  
This	
   protein	
   can	
   enter	
   the	
   nucleus	
   and	
   activate	
   different	
   transcription	
   factors,	
  

                                                                                                                            	
   267	
  

	
  
   92   93   94   95   96   97   98   99   100   101   102