Page 100 - 79_02
P. 100
A.
Gómez
et
col.
7.
REFERENCES
1.
Yan,
L.;
D.E.
Vatner,
D.E.;
O’Connor,
J.P.;
Ivessa,
A.;
Ge,
H.;
Chen,
W.;
Hirotani,
S.;
Ishikawa,
Y.;
Sadoshima,
J.;
Vatner,
S.F.
Type
5
adenylyl
cyclase
disruption
increases
longevity
and
protects
against
stress.
Cell,
2007;
130,
247–258.
2.
Sanchez--Roman,
I.;
Gomez,
J.;
Naudi,
A.;
Ayala,
V.;
Portero--Otín,
M.;
Lopez--Torres,
M.;
Pamplona,
R.;
Barja,
G.
The
beta--blocker
atenolol
lowers
the
longevity--related
degree
of
fatty
acid
unsaturation,
decreases
protein
oxidative
damage,
and
increases
extracellular
signal--regulated
kinase
signaling
in
the
heart
of
C57BL/6
mice.
Rejuv
Res
2010;
13,
683–
693
3.
Barja,
G.;
Cadenas,
S.;
Rojas,
C.;
Pérez--Campo,
R.;
López--Torres,
M.
Low
mitochondrial
free
radical
production
per
unit
O2
consumption
can
explain
the
simultaneous
presence
of
high
longevity
and
high
aerobic
metabolic
rate
in
birds.
Free
Radic
Res
1994,
21,
317–327
4.
Barja,
G.;
Mitochondrial
oxygen
consumption
and
reactive
oxygen
species
production
are
independently
modulated:
implications
for
aging
studies.
Rejuv
Res
2007;
10,
215–224
5.
Pamplona,
R.;
Portero
Otín,
M.;
Riba,
D.;
Ruiz,
C.;
Prat,
J.;
Bellmunt,
M.J.;
Barja,
G.
Mitochondrial
membrane
peroxidizability
index
is
inversely
related
to
maximum
life
span
in
mammals.
J
Lipid
Res
1998;
39,
1989--94
6.
Hulbert,
A.J.;
Pamplona,
R.;
Buffestein,
R.;
Buttemer,
W.A.
Life
and
death:
metabolic
rate,
membrane
composition
and
life
span
of
animals.
Physiological
Reviews
2007;
87,
1175--
1213
7.
Hagopian,
K.;
Chen,
Y.;
Simmons
Domer,
K.;
Soo
Hoo,
R.;
Bentley,
T.;
McDonald,
R.B.;
Ramsey,
J.J.
Caloric
restriction
influences
hydrogen
peroxide
generation
in
mitochondrial
sub--
populations
from
mouse
liver.
J
Bioenerg
Biomembr
2011;
43,
227--36
8.
Gredilla,
R.;
Barja,
G.
Caloric
restriction,
aging
and
oxidative
stress.
Endocrinology
2005;
146,
3713–3717
9.
Sanz,
A.;
Caro,
P.;
Barja,
G.
Protein
restriction
without
strong
caloric
restriction
decreases
mitochondrial
oxygen
radical
production
and
oxidative
DNA
damage
in
rat
liver.
J
Bioenerg
Biomembr
2004;
36,
545–552
10.
Sanz,
A.;
Caro,
P.;
Ayala,
V.;
Portero--Otin,
M.;
Pamplona,
R.;
Barja,
G.
Methionine
restriction
decreases
mitochondrial
oxygen
radical
generation
and
leak
as
well
as
oxidative
damage
to
mitochondrial
DNA
and
proteins.
FASEB
J
2006a;
20,
1064–1073
11.
Maresca,
B.,
Cossins,
A.R.
Fatty
acid
feedback
and
fluidity.
Nature
1993;
365,
606–607.
12.
Hoch,
F.L.
Cardiolipins
and
membrane
function.
Biochim.
Biophys
Acta
1992;
1113,
71–133.
13.
Pamplona,
R.;
Portero--Otín,
M.;
Sanz,
A.;
Requena,
J.;
Barja,
G.
Modification
of
the
longevity--
related
degree
of
fatty
acid
unsaturation
modulates
oxidative
damage
to
proteins
and
mitochondrial
DNA
in
liver
and
brain.
Experimental
Gerontology
2004;
39,
725–733
14.
Sato,
A.,
Huang,
M.Z.,
Watanabe,
S.,
Okuyama,
H.,
Nakamoto,
H.,
Rada´k,
Z.,
Goto,
S.
Protein
carbonyl
content
roughly
reflects
the
unsaturation
of
lipids
in
skeletal
muscle
but
not
in
other
tissues
of
stroke--prone
spontaneously
hypertensive
strain
(SHRSP)
rats
fed
different
fats
and
oils.
Biol.
Pharm.
Bull.
1998;
21,
1271–1276.
15.
Moreau,
R.;
Nguyen,
BT.;
Doneanu,
CE.;
Hagen,
T.M.
Reversal
by
aminoguanidine
of
the
age--
related
increase
in
glycoxidation
and
lipoxidation
in
the
cardiovascular
system
of
Fischer
344
rats.
Biochem
Pharmacol,
2005;
69,
29–40.
16.
Pratt,
D.A.;
Tallman,
K.A.;
Porter,
N.A.
Free
Radical
Oxidation
of
Polyunsaturated
Lipids:
New
Mechanistic
Insights
and
the
Development
of
Peroxyl
Radical
Clocks.
Acc
Chem
Res,
2011;
44,
458--67.
17.
Holman,
R.T.
Autoxidation
of
fats
and
related
substances.
In:
Holman
RT,
Lundberg
WO,
Malkin
T
(eds)
Progress
in
chemistry
of
fats
and
other
lipids.
Pergamon
Press,
London,
1954;
51–98
270