Page 98 - 79_02
P. 98

A.	
  Gómez	
  et	
  col.	
  

	
  
modifying	
   genes	
   related	
   to	
   oxidative	
   stress,	
   including	
   genes	
   coding	
   for	
   desaturase	
  
and	
  elongase	
  enzymes,	
  as	
  well	
  as	
  those	
  controlling	
  peroxisomal	
  ß-­-oxidation,	
  and	
  are	
  
rate	
   limiting	
   for	
   the	
   synthesis	
   of	
   the	
   highly	
   peroxidizable	
   22:6n-­-3	
   FA.	
   Lower	
  
desaturase/elongase/peroxisomal	
  ß-­-oxidation	
  activities	
  induced	
  by	
  the	
  AT-­-blockade	
  
(via	
   low	
   AC	
   and	
   high	
   p-­-ERK)	
   would	
   decrease	
   22:6-­-n3	
   formation	
   from	
   its	
   less	
  
unsaturated	
  18:3n-­-3	
  dietary	
  precursor.	
  

        Concerning	
   cellular	
   signaling,	
   AMPK	
   responds	
   to	
   high	
   intracellular	
   levels	
   of	
  
AMP,	
   and	
   activates	
   (besides	
   others)	
   the	
   expression	
   of	
   SIRT1	
   (Silent	
   information	
  
regulator	
   1)	
   (53).	
   SIRT1	
   regulates	
   energy	
   metabolism,	
   cell	
   apoptosis,	
   cell	
  
proliferation	
   and	
   inflammation,	
   as	
   well	
   as	
   stress	
   resistance	
   by	
   means	
   of	
   FOXO,	
   p53	
  
and	
   NF-­-B	
   signaling,	
   increasing	
   the	
   intracellular	
   concentration	
   of	
   NAD+.	
   SIRT1	
   is	
  
increased	
   in	
   caloric	
   restriction	
   (life-­-extending)	
   models,	
   and	
   can	
   activate	
   cellular	
  
stress	
   resistance,	
   playing	
   an	
   anti-­-aging	
   role	
   (54).	
   In	
   our	
   study,	
   SIRT1	
   levels	
   were	
  
higher	
  after	
  the	
  atenolol	
  treatment	
  in	
  the	
  heart,	
  which	
  indicates	
  that	
  the	
  blocking	
  of	
  
AC	
  inactivates	
  the	
  AMPc.	
  That	
  would	
  increase	
  SIRT1	
  expression	
  through	
  the	
  ensuing	
  
changes	
  in	
  intracellular	
  levels	
  of	
  AMP	
  then	
  of	
  AMPK.	
  

        Nrf2	
   is	
   the	
   “master	
   regulator”	
   of	
   the	
   antioxidant	
   response	
   modulating	
   the	
  
expression	
  of	
  many	
  several	
  antioxidant-­-codifying	
  genes	
  (55),	
  and	
  TFAM	
  is	
  a	
  regulator	
  
of	
  mtDNA	
  transcription,	
  whose	
  lack	
  leads	
  to	
  severe	
  respiratory	
  chain	
  deficiency	
  (56).	
  
Since	
   it	
   is	
   now	
   well	
   known	
   that	
   long-­-lived	
   animals	
   have	
   lower	
   tissue	
   levels	
   of	
  
antioxidant	
   enzymes	
   and	
   other	
   endogenous	
   antioxidants	
   (57)	
   and	
   less	
   endogenous	
  
DNA	
   base	
   excision	
   repair	
   (BER)	
   activity	
   (58),	
   which	
   are	
   secondary	
   events	
   to	
   the	
  
lower	
  rate	
  of	
  mtROSp	
  of	
  long-­-lived	
  animal	
  species	
  (59,	
  37),	
  it	
  is	
  not	
  strange	
  that	
  Nrf2	
  
and	
  TFAM	
  were	
  decreased	
  after	
  atenolol	
  treatment.	
  

        Finally,	
   although	
   our	
   results	
   show	
   an	
   improvement	
   in	
   parameters	
   related	
  
with	
  longevity,	
  a	
  low	
  DBI,	
  PI,	
  protein	
  oxidation	
  and	
  lipoxidation	
  in	
  mitochondria	
  from	
  
both	
   tissues,	
   and	
   in	
   mtDNA	
   oxidative	
   damage	
   (in	
   the	
   case	
   of	
   heart),	
   this	
   was	
   not	
  
enough	
  to	
  increase	
  longevity,	
  as	
  it	
  is	
  evident	
  form	
  the	
  survival	
  curves	
  finally	
  obtained,	
  
since	
   atenolol	
   treated	
   mice	
   did	
   not	
   live	
   longer	
   than	
   the	
   control	
   animals.	
   Although	
  
mean	
  life	
  span	
  was	
  similar	
  in	
  both	
  groups,	
  only	
  at	
  the	
  end	
  of	
  the	
  life	
  span	
  and	
  in	
  very	
  
old	
   animals	
   (equivalent	
   to	
   70-­-80	
   years	
   old	
   humans)	
   survival	
   was	
   somewhat	
  
decreased	
   after	
   long-­-term	
   treatment	
   with	
   atenolol.	
   This	
   can	
   be	
   due	
   to	
   a	
   deleterious	
  
secondary	
   effect	
   of	
   the	
   drug.	
   All	
   ß-­-blockers	
   act	
   by	
   decreasing	
   blood	
   pressure/heart	
  
rate	
  (60),	
  and	
  that	
  is	
  known	
  to	
  be	
  advantageous	
  for	
  coronary	
  disease	
  patients,	
  or	
  for	
  
those	
   surviving	
   after	
   heart	
   attacks	
   or	
   other	
   serious	
   cardiovascular	
   illnesses.	
  
However,	
   recent	
   meta-­-analyses	
   in	
   humans	
   are	
   suggesting	
   that	
   in	
   the	
   case	
   of	
   old	
  
hypertensive	
  patient’s	
  atenolol	
  can	
  decrease	
  instead	
  of	
  increase	
  survival	
  (61).	
  When	
  
old	
   patients	
   are	
   treated	
   with	
   ß-­-blockers	
   (atenolol	
   is	
   used	
   in	
   around	
   75%	
   of	
   cases)	
  
rigid	
   arteries	
   typical	
   of	
   old	
   people	
   can	
   result	
   in	
   sporadically	
   too	
   low	
   diastolic	
   or	
  
systolic	
   blood	
   pressures,	
   which,	
   together	
   with	
   the	
   aged	
   myocardium	
   of	
   old	
   people	
  

268	
  	
  

	
  
   93   94   95   96   97   98   99   100   101   102   103