Page 82 - 78_01
P. 82
AVIZORES
DEL
SISTEMA
INMUNE……
12.
da
Silva
Correia,
J.,
Soldau,
K.,
Christen,
U.,
Tobias,
P.S.,
&
Ulevitch,
R.J.
(2001).
Lipopolysaccharide
is
in
close
proximity
to
each
of
the
proteins
in
its
membrane
receptor
complex.
transfer
from
CD14
to
TLR4
and
MD--2.
J
Biol
Chem.,
276,
21129--21135.
13
Heguy,
A.,
Baldari,
C.T.,
Macchia,
G.,
Telford,
J.L.,
&
Melli,
M.
(1992).
Amino
acids
conserved
in
interleukin--1
receptors
(IL--1Rs)
and
the
Drosophila
toll
protein
are
essential
for
IL--1R
signal
transduction.
J
Biol
Chem.,
267,
2605--2609.
14.
Muzio,
M.,
Ni,
J.,
Feng,
P.,
Dixit,
V.M.,
IRAK
(Pelle)
family
member
IRAK--2
and
MyD88
as
proximal
mediators
of
IL--1
signaling.
Science.
1997,
278,
1612--1615.
15.
Muzio,
M.,
Natoli,
G.,
Saccani,
S.,
Levrero,
&
M.,
Mantovani,
A.
(1998).
The
human
toll
signaling
pathway:
divergence
of
nuclear
factor
kappaB
and
JNK/SAPK
activation
upstream
of
tumor
necrosis
factor
receptor--associated
factor
6
(TRAF6).
J
Exp
Med.,
187,
2097--2101.
16.
Takeuchi,
O.,
&
Akira,
S.
(2010)
Pattern
recognition
receptors
and
inflammation.
Cell,
140,
805--
820.
17.
Seimon,
T.A.,
Nadolski,
M.J.,
Liao,
X.,
Magallon,
J.,
Nguyen,
M.,
Feric,
N.T.,
Koschinsky,
M.L.,
Harkewicz,
R.,
Witztum,
J.L.,
Tsimikas,
S.,
Golenbock,
D.,
Moore,
K.J.,
&
Tabas,
I.
(2010).
Atherogenic
lipids
and
lipoproteins
trigger
CD36--TLR2--dependent
a.poptosis
in
macrophages
undergoing
endoplasmic
reticulum
stress.
Cell
Metab.,
12,
467--482.
18.
Cole,
J.E.,
Navin,
T.J.,
Cross,
A.J.,
Goddard,
M.E.,
Alexopoulou,
L.,
Mitra,
A.T.,
Davies,
A.H.,
Flavell,
R.A.,
Feldmann,
M.,
&
Monaco,
C.
(2011).
Unexpected
protective
role
for
Toll--like
receptor
3
in
the
arterial
wall.
Proc
Natl
Acad
Sci
U
S
A,
108,
2372--2377.
19.
Steinman,
R.M.,
&
Cohn,
Z.A.
(1973).
Identification
of
a
novel
cell
type
in
peripheral
lymphoid
organs
of
mice.
I.
Morphology,
quantitation,
tissue
distribution.
J.
Exp.
Med.,
137,
1142--1162.
20.
Geissmann,
F.,
Gordon,
S.,
Hume,
D.A.,
Mowat,
A.M.,
&
Randolph,
G.J.
(2010).
Unravelling
mononuclear
phagocyte
heterogeneity.
Nat
Rev
Immunol.,
10,
453--460.
21.
Auffray,
C.,
Sieweke,
M.H.,
Geissmann,
F.,
Blood
monocytes:
development,
heterogeneity,
and
relationship
with
dendritic
cells.
Annu
Rev
Immunol.
2009,
27,
669–692.
22.
Swirski,
F.K.,
Nahrendorf,
M.,
Etzrodt,
M.,
Wildgruber,
M.,
Cortez--Retamozo,
V.,
Panizzi,
P.,
&
al.
(2009).
Identification
of
splenic
reservoir
monocytes
and
their
deployment
to
inflammatory
sites.
Science,
325,
612–616.
23.
Dunay,
I.R.,
Damatta,
R.A.,
Fux,
B.,
Presti,
R.,
Greco,
S.,
Colonna,
M.,
&
al.
(2008).
Gr1(þ)
inflammatory
monocytes
are
required
for
mucosal
resistance
to
the
pathogen
Toxoplasma
gondii.
Immunity,
29,
306–317.
24.
Auffray,
C.,
Fogg,
D.,
Garfa,
M.,
Elain,
G.,
Join--Lambert,
O.,
Kayal,
S.,
&
al.
(2007).
Monitoring
of
blood
vessels
and
tissues
by
a
population
of
monocytes
with
patrolling
behavior.
Science,
317,
666–670.
25.
Shi,
C.,
&
Pamer,
E.G.,
Monocyte
recruitment
during
infection
and
inflammation.
(2011).
Nat.
Rev.
Immunol.,
11,
762--774.
26.
Liu,
K.,
Victora,
G.D.,
Schwickert,
T.A.,
Guermonprez,
P.,
Meredith,
M.M.,
Yao,
K.
&
al.
(2009).
In
vivo
analysis
of
dendritic
cell
development
and
homeostasis.
Science,
324,
392–397.
27.
Auffray,
C.
,
Fogg,
D.K.
,
Narni--Mancinelli,
E.
,
Senechal,
B.
,
Trouillet,
C.,
Saederup,
N.
&
al.
(2009).
CX3CR1þ
CD115þ
CD135þ
common
macrophage/DC
precursors
and
the
role
of
CX3CR1
in
their
response
to
inflammation.
J
Exp
Med.,
206,
595–606.
28.
Darrasse--Jeze,
G.,
Deroubaix,
S.,
Mouquet,
H.,
Victora,
G.D.,
Eisenreich,
T.,
Yao,
K.H.
&
al.
(2009).
Feedback
control
of
regulatory
T
cell
homeostasis
by
dendritic
cells
in
vivo.
J
Exp
Med.,
206:1853–1862.
29.
Alvarez,
D.,
Vollmann,
E.H.,
&
von
Andrian,
U.H.
(2008).
Mechanisms
and
consequences
of
dendritic
cell
migration.
Immunity.
29,
325–342.
30.
Steinman,
R.M.,
&
Banchereau,
J.
(2007).
Taking
dendritic
cells
into
medicine.
Nature,
449,
419--426.
79