Page 104 - 87_02
P. 104
• Otra segunda fuente natural son los protistas del género Au- ANALES
rantiochytrium sp. 18W-13a que acumulan un 13% de su peso RANF
como escualeno (28).
• Nuevos desarrollos tecnológicos a partir de caña de azúcar www.analesranf.com
como el que ha desarrollado la empresa Amyris Biotecnología,
(Emeryville, CA, USA) o la generación de nuevas levaduras por Fernández-Juan M, Navarro MA, et al. Squalene: Current Knowledge
biología sintética que lo acumulen (29) y que ya explota la em- and Potential Therapeutical Uses. First edition ed. New York: NOVA;
presa Enepret Inc (Lexington, KY, USA) muestran la importancia 2010.
de producir este compuesto de la máxima pureza, bajo coste y 10. Reddick RL, Zhang SH, Maeda N. Atherosclerosis in mice lacking apo
con el menor impacto ambiental. E. Evaluation of lesional development and progression. Arterioscler
6. CONCLUSIONES Thromb. 1994;14:141-7.
• El escualeno es más que un intermediario metabólico en la 11. Sarria AJ, Surra JC, Acin S, Carnicer R, Navarro MA, Arbones-Mainar
biosíntesis de colesterol, fitosteroles y terpenos. JM, et al. Understanding the role of dietary components on atheros-
• Posee una amplia gama acciones importantes en varios siste- clerosis using genetic engineered mouse models. Front Biosci.
mas biológicos. 2006;11:955-67.
• Su amplio uso industrial en cosmética y adyuvante de vacunas 12. Demetrius L. Of mice and men. When it comes to studying ageing
plantea importantes retos medioambientales. and the means to slow it down, mice are not just small humans. EMBO
• Son esos desafíos los que actúan como un motor de desarrollo reports. 2005;6:S39-S44.
biotecnológico para una producción más sostenible de este com- 13. Willett WC. Diet and health: what should we eat? Science.
puesto. 1994;264:532-7.
7. REFERENCIAS 14. Calleja L, Paris MA, Paul A, Vilella E, Joven J, Jimenez A, et al. Low-
1. Pubchem. 2021. Accesible: cholesterol and high-fat diets reduce atherosclerotic lesion develop-
https://pubchem.ncbi.nlm.nih.gov/#query=C30H50. ment in ApoE-knockout mice. Arterioscler Thromb Vasc Biol.
2. Tsujimoto M. A highly unsaturated hydrocarbon in shark liver oil. J 1999;19:2368-75.
Ind Eng Chem 1916;8:889-96. 15. Acin S, Navarro MA, Perona JS, Arbones-Mainar JM, Surra JC, Guzman
3. Tsujimoto M. Squalene: a highly unsaturated hydrocarbon in shark MA, et al. Olive oil preparation determines the atherosclerotic protec-
liver oil. J Ind Eng Chem 1920;12:63-72. tion in apolipoprotein E knockout mice. J Nutr Biochem.
4. Lou-Bonafonte JM, Martinez-Beamonte R, Sanclemente T, Surra JC, 2007;18:418-24.
Herrera-Marcos LV, Sanchez-Marco J, et al. Current Insights into the 16. Guillen N, Acin S, Navarro MA, Perona JS, Arbones-Mainar JM, Arnal
Biological Action of Squalene. Mol Nutr Food Res. 2018:e1800136. C, et al. Squalene in a sex-dependent manner modulates atheroscle-
5. Martinez-Beamonte R, Sanclemente T, Surra JC, Osada J. Could squa- rotic lesion which correlates with hepatic fat content in apoE-knockout
lene be an added value to use olive by-products? J Sci Food Agric. male mice. Atherosclerosis. 2008;197:72-83.
2020;100(3):915-25. 17. Ramirez-Torres A, Barcelo-Batllori S, Martinez-Beamonte R, Navarro
6. Owen RW, Mier W, Giacosa A, Hull WE, Spiegelhalder B, Bartsch H. MA, Surra JC, Arnal C, et al. Proteomics and gene expression analyses
Phenolic compounds and squalene in olive oils: the concentration and of squalene-supplemented mice identify microsomal thioredoxin do-
antioxidant potential of total phenols, simple phenols, secoiridoids, main-containing protein 5 changes associated with hepatic steatosis. J
lignans and squalene. Food Chem Toxicol. 2000;38(8):647-59. Proteomics. 2012;77:27-39.
7. Boskou D. Olive oil, Chemistry and Technology. Champaign, IL: AOCS 18. Ramírez-Torres A, Gabás-Rivera C, Osada J. Squalene: A Trove of Meta-
Press; 1996. bolic Actions. In: Boskou D, Clodoveo ML, editors. Products from Olive
8. Arbonés-Mainar JM, Navarro MA, Lou-Bonafonte JM, Martínez-Gracia Tree: IntechOpen Limited; 2016.
MV, Osada J. Olive oil phenolic compounds as potential therapeutical 19. Martinez-Beamonte R, Alda O, Sanclemente T, Felices MJ, Escusol S, Arnal
agents. Vasallo N, editor. La Veletta: Nova; 2008. C, et al. Hepatic subcellular distribution of squalene changes according
9. Ramírez-Torres A, Gabás C, Barranquero C, Martínez- Beamonte R, to the experimental setting. J Physiol Biochem. 2018;74:531–8.
20. Herrera-Marcos LV, Sancho-Knapik S, Gabas-Rivera C, Barranquero C,
Gascon S, Romanos E, et al. Pgc1a is responsible for the sex differences
in hepatic Cidec/Fsp27beta mRNA expression in hepatic steatosis of mice
fed a Western diet. Am J Physiol Endocrinol Metab. 2020;318:E249-
E61.
21. Gabas-Rivera C, Jurado-Ruiz E, Sanchez-Ortiz A, Romanos E, Martinez-
Beamonte R, Navarro MA, et al. Dietary Squalene Induces Cytochromes
Cyp2b10 and Cyp2c55 Independently of Sex, Dose, and Diet in Several
Mouse Models. Mol Nutr Food Res. 2020;64:e2000354.
Squalene, a vibrant molecule despite its one-hundred-five-year
210 old discovery
Jesús De la Osada García
An. Real Acad. Farm. Vol. 87. Nº 2 (2021) · pp. 205-211