Page 51 - 84_01
P. 51
Stem cells and their exosomes as an advanced therapy to treat incisional hernia: proof of concept in a murine model
29. Wassenaar E, Schoenmaeckers E, Raymakers J, et al. Mesenchymal stem cells-derived exosomes are more
Mesh-fixation method and pain and quality of life immunosuppressive than microparticles in
after laparoscopic ventral or incisional hernia repair: a inflammatory arthritis. Theranostics 2018; 8(5): 1399–
randomized trial of three fixation techniques. Surg 410.
Endosc 2010; 24(6): 1296–302.
43. Di Trapani M, Bassi G, Midolo M, et al. Differential
30. Chatzimavroudis G, Kalaitzis S, Voloudakis N, et al. and transferable modulatory effects of mesenchymal
Evaluation of four mesh fixation methods in an stromal cell-derived extracellular vesicles on T, B and
experimental model of ventral hernia repair. J Surg NK cell functions. Sci Rep 2016; 6: 24120.
Res 2017; 212: 253–9.
44. Wrammert J, Källberg E, Agace WW, Leanderson T.
31. Berninger MT, Wexel G, Rummeny EJ, et al. Ly6C expression differentiates plasma cells from
Treatment of osteochondral defects in the rabbit’s other B cell subsets in mice. Eur J Immunol 2002;
knee joint by implantation of allogeneic mesenchymal 32(1): 97–103.
stem cells in fibrin clots. J Vis Exp 2013; (75): e4423.
45. Abumaree MH, Al Jumah MA, Kalionis B, et al.
32. Ho W, Tawil B, Dunn JCY, Wu BM. The behavior of Human placental mesenchymal stem cells (pMSCs)
human mesenchymal stem cells in 3D fibrin clots: play a role as immune suppressive cells by shifting
dependence on fibrinogen concentration and clot macrophage differentiation from inflammatory M1 to
structure. Tissue Eng 2006; 12(6): 1587–95. anti-inflammatory M2 macrophages. Stem Cell Rev
2013; 9(5): 620–41.
33. Blazquez R, Sanchez-Margallo FM, de la Rosa O,
Dalemans W, et al. Immunomodulatory Potential of 46. Sica A, Mantovani A. Macrophage plasticity and
Human Adipose Mesenchymal Stem Cells Derived polarization: in vivo veritas. J Clin Invest 2012;
Exosomes on in vitro Stimulated T Cells. Front 122(3): 787–95.
Immunol 2014; 5: 556.
47. Rittling SR. Osteopontin in macrophage function.
34. G Casado J, Blázquez Durán R, Vela FJ, et al. Expert Rev Mol Med 2011; 13: e15.
Mesenchymal stem cells derived exosomes:
immunomodulatory evaluation in an antigen-induced 48. Henriksen NA, Yadete DH, Sorensen LT, et al.
synovitis porcine model. Front Vet Sci 2017; 4: 39. Connective tissue alteration in abdominal wall hernia.
Br J Surg 2011; 98(2): 210–9.
35. Wolberg AS. Determinants of fibrin formation,
structure, and function. Curr Opin Hematol 2012;
19(5): 349–56.
36. Laurens N, Koolwijk P, de Maat MPM. Fibrin
structure and wound healing. J Thromb Haemost
2006; 4(5): 932–9.
37. Topart P, Vandenbroucke F, Lozac’h P. Tisseel versus
tack staples as mesh fixation in totally extraperitoneal
laparoscopic repair of groin hernias: a retrospective
analysis. Surg Endosc 2005; 19(5): 724–7.
38. Katkhouda N, Mavor E, Friedlander MH, et al. Use of
fibrin sealant for prosthetic mesh fixation in
laparoscopic extraperitoneal inguinal hernia repair.
Ann Surg 2001; 233(1): 18–25.
39. Zogbi L. The Use of Biomaterials to Treat Abdominal
Hernias. En: Pignatello R, Ed. Biomaterials
Applications for Nanomedicine (Internet). InTech
2011 (2017 Sep 23). Disponible en
(http://www.intechopen.com/books/biomaterials-
applications-for-nanomedicine/the-use-of-
biomaterials-to-treat-abdominal-hernias).
40. Lo Sicco C, Reverberi D, Balbi C, et al. Mesenchymal
Stem Cell-Derived Extracellular Vesicles as
Mediators of Anti-Inflammatory Effects: Endorsement
of Macrophage Polarization. Stem Cells Transl Med
2017; 6(3): 1018–28.
41. Suzuki E, Fujita D, Takahashi M, et al. Stem cell-
derived exosomes as a therapeutic tool for
cardiovascular disease. World J Stem Cells 2016;
8(9): 297–305.
42. Cosenza S, Toupet K, Maumus M, et al.
@Real Academia Nacional de Farmacia. Spain 51