Page 63 - 81_02
P. 63
Reactive oxygen species and vascular remodeling in cardiovascular diseases
NOX4 in the pulmonary vasculature. Circ Res 2007; Kimura S, Kohno M, Abe Y. Possible contributions of
101: 258-67.
79. Diebold I, Petry A, Hess J, Görlach A. The NADPH reactive oxygen species and mitogen-activated protein
oxidase subunit NOX4 is a new target gene of the
hypoxia-inducible factor-1. Mol Biol Cell 2010; 21: kinase to renal injury in aldosterone/salt-induced
2087-96.
80. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, hypertensive rats. Hypertension 2004; 43: 841-8.
Ariyan S, Dikalov S, Sorescu D. NAD(P)H oxidase 4
mediates transforming growth factor-beta1-induced 90. Judkins CP, Diep H, Broughton BR, Mast AE, Hooker
differentiation of cardiac fibroblasts into
myofibroblasts. Circ Res 2005; 97: 900-7. EU, Miller AA, Selemidis S, Dusting GJ, Sobey CG,
81. Sturrock A, Cahill B, Norman K, Huecksteadt TP,
Hill K, Sanders K, Karwande SV, Stringham JC, Bull Drummond GR. Direct evidence of a role for Nox2 in
DA, Gleich M, Kennedy TP, Hoidal JR. Transforming
growth factor-beta1 induces Nox4 NAD(P)H oxidase superoxide production, reduced nitric oxide
and reactive oxygen species-dependent proliferation in
human pulmonary artery smooth muscle cells. Am J bioavailability, and early atherosclerotic plaque
Physiol Lung Cell Mol Physiol 2006; 290: L661-73.
82. Sturrock A, Huecksteadt TP, Norman K, Sanders K, formation in ApoE-/-mice. Am J Physiol Heart Circ
Murphy TM, Chitano P, Wilson K, Hoidal JR,
Kennedy TP. Nox4 mediates TGF-beta1-induced Physiol 2010; 298: H24-32.
retinoblastoma protein phosphorylation, proliferation,
and hypertrophy in human airway smooth muscle 91. Stanic B, Pandey D, Fulton DJ, Miller FJ Jr. Increased
cells. Am J Physiol Lung Cell Mol Physiol 2007; 292:
L1543-55. epidermal growth factor-like ligands are associated
83. Ellmark SHM, Dusting GJ, Tang Fui MN, Guzzo-
Pernell N, Drummond GR The contribution of Nox4 with elevated vascular nicotinamide adenine
to NADPH oxidase activity in mouse vascular smooth
muscle. Cardiovasc Res 2005; 65: 495-504. dinucleotide phosphate oxidase in a primate model of
84. Hwang J, Kleinhenz DJ, Lassègue B, Griendling KK,
Dikalov S, Hart CM. Peroxisome proliferator- atherosclerosis. ArteriosclerThromb Vasc Biol 2012;
activated receptor-gamma ligands regulate endothelial
membrane superoxide production. Am J Physiol Cell 32: 2452-60.
Physiol 2005; 288: C899-905.
85. Richard D, Wolf C, Barbe U, Kefi K, Bausero P, 92. Katsuyama M, Matsuno K, Yabe-Nishimura C.
Visioli F. Docosahexaenoic acid down-regulates
endothelial Nox 4 through a sPLA2 signalling Physiological roles of NOX/NADPH oxidase, the
pathway. Biochem Biophys Res Commun 2009; 389:
516-22. superoxide-generating enzyme. J Clin Biochem Nutr
86. Wind S, Beuerlein K, Armitage ME, Taye A, Kumar
AH, Janowitz D Neff C, Shah AM, Wingler K, 2012; 50: 9-22.
Schmidt HH. Oxidative stress and endothelial
dysfunction in aortas of aged spontaneously 93. Zhang L, Sheppard OR, Shah AM, Brewer AC.
hypertensive rats by NOX1/2 is reversed by NADPH
oxidase inhibition. Hypertension 2010; 56: 490-7. Positive regulation of the NADPH oxidase NOX4
87. Paravicini TM, Chrissobolis S, Drummond GR Sobey
CG. Increased NADPH oxidase activity and Nox4 promoter in vascular smooth muscle cells by E2F.
expression during chronic hypertension is associated
with enhanced cerebral vasodilatation to NADPH in Free Radic Biol Med 2008; 45: 679-85.
vivo. Stroke 2004; 35: 584-9.
88. Mollnau H, Wendt M, Szöcs K, Lassègue B, Schulz 94. Katsuyama M, Hirai H, Iwata K, Ibi M, Matsuno K,
E, Oelze M, Li H, Bodenschatz M, August M,
Kleschyov AL, Tsilimingas N, Walter U, Förstermann Matsumoto M, Yabe-Nishimura C. Sp3 transcription
U, Meinertz T, Griendling K, Münzel T. Effects of
angiotensin II infusion on the expression and function factor is crucial for transcriptional activation of the
of NAD(P)H oxidase and components of nitric
oxide/cGMP signaling. Circ Res 2002; 90: E58-65. human NOX4 gene. FEBS J 2011; 278: 964-72.
89. Nishiyama A, Yao L, Nagai Y, Miyata K, Yoshizumi
M, Kagami S, Kondo S, Kiyomoto H, Shokoji T, 95. Siuda D, Zechner U, El Hajj N, Prawitt D, Langer D,
Xia N, Horke S, Pautz A, Kleinert H, Förstermann U,
Li H. Transcriptional regulation of Nox4 by histone
deacetylases in human endothelial cells. Basic Res
Cardiol 2012; 107: 283.
96. Paneni F, Osto E, Costantino S, Mateescu B, Briand
S, Coppolino G, Perna E, Mocharla P, Akhmedov A,
Kubant R, Rohrer L, Malinski T, Camici GG, Matter
CM, Mechta-Grigoriou F, Volpe M, Lüscher TF,
Cosentino F. Deletion of the activated protein-1
transcription factor JunD induces oxidative stress and
accelerates age-related endothelial dysfunction.
Circulation 2013; 127: 1229-40, e1-21.
97. Varga ZV, Kupai K, Szucs G, Gáspár R, Pálóczi J,
Faragó N, Zvara A, Puskás LG, Rázga Z, Tiszlavicz
L, Bencsik P, Görbe A, Csonka C, Ferdinandy P,
Csont T. MicroRNA-25-dependent up-regulation of
NADPH oxidase 4 (NOX4) mediat es
hypercholesterolemia-induced oxidative/nitrative
stress and subsequent dysfunction in the heart. J Mol
Cell Cardiol 2013; 62: 111-21.
98. Peshavariya H, Jiang F, Taylor CJ, Selemidis S,
Chang CW, Dusting GJ. Translation-linked mRNA
destabilization accompanying serum-induced Nox4
expression in human endothelial cells. Antioxid
Redox Signal 2009; 11: 2399-408.
99. Raaz U, Toh R, Maegdefessel L, Adam M, Nakagami
F, Emrich FC, Spin JM, Tsao PS. Hemodynamic
regulation of reactive oxygen species: implications for
@Real Academia Nacional de Farmacia. Spain 143