Page 63 - 81_02
P. 63

Reactive oxygen species and vascular remodeling in cardiovascular diseases

     NOX4 in the pulmonary vasculature. Circ Res 2007;       Kimura S, Kohno M, Abe Y. Possible contributions of
     101: 258-67.
79. Diebold I, Petry A, Hess J, Görlach A. The NADPH         reactive oxygen species and mitogen-activated protein
     oxidase subunit NOX4 is a new target gene of the
     hypoxia-inducible factor-1. Mol Biol Cell 2010; 21:     kinase to renal injury in aldosterone/salt-induced
     2087-96.
80. Cucoranu I, Clempus R, Dikalova A, Phelan PJ,            hypertensive rats. Hypertension 2004; 43: 841-8.
     Ariyan S, Dikalov S, Sorescu D. NAD(P)H oxidase 4
     mediates transforming growth factor-beta1-induced       90. Judkins CP, Diep H, Broughton BR, Mast AE, Hooker
     differentiation of cardiac fibroblasts into
     myofibroblasts. Circ Res 2005; 97: 900-7.               EU, Miller AA, Selemidis S, Dusting GJ, Sobey CG,
81. Sturrock A, Cahill B, Norman K, Huecksteadt TP,
     Hill K, Sanders K, Karwande SV, Stringham JC, Bull      Drummond GR. Direct evidence of a role for Nox2 in
     DA, Gleich M, Kennedy TP, Hoidal JR. Transforming
     growth factor-beta1 induces Nox4 NAD(P)H oxidase        superoxide production, reduced nitric oxide
     and reactive oxygen species-dependent proliferation in
     human pulmonary artery smooth muscle cells. Am J        bioavailability, and early atherosclerotic plaque
     Physiol Lung Cell Mol Physiol 2006; 290: L661-73.
82. Sturrock A, Huecksteadt TP, Norman K, Sanders K,         formation in ApoE-/-mice. Am J Physiol Heart Circ
     Murphy TM, Chitano P, Wilson K, Hoidal JR,
     Kennedy TP. Nox4 mediates TGF-beta1-induced             Physiol 2010; 298: H24-32.
     retinoblastoma protein phosphorylation, proliferation,
     and hypertrophy in human airway smooth muscle           91. Stanic B, Pandey D, Fulton DJ, Miller FJ Jr. Increased
     cells. Am J Physiol Lung Cell Mol Physiol 2007; 292:
     L1543-55.                                               epidermal growth factor-like ligands are associated
83. Ellmark SHM, Dusting GJ, Tang Fui MN, Guzzo-
     Pernell N, Drummond GR The contribution of Nox4         with elevated vascular nicotinamide adenine
     to NADPH oxidase activity in mouse vascular smooth
     muscle. Cardiovasc Res 2005; 65: 495-504.               dinucleotide phosphate oxidase in a primate model of
84. Hwang J, Kleinhenz DJ, Lassègue B, Griendling KK,
     Dikalov S, Hart CM. Peroxisome proliferator-            atherosclerosis. ArteriosclerThromb Vasc Biol 2012;
     activated receptor-gamma ligands regulate endothelial
     membrane superoxide production. Am J Physiol Cell       32: 2452-60.
     Physiol 2005; 288: C899-905.
85. Richard D, Wolf C, Barbe U, Kefi K, Bausero P,           92. Katsuyama M, Matsuno K, Yabe-Nishimura C.
     Visioli F. Docosahexaenoic acid down-regulates
     endothelial Nox 4 through a sPLA2 signalling            Physiological roles of NOX/NADPH oxidase, the
     pathway. Biochem Biophys Res Commun 2009; 389:
     516-22.                                                 superoxide-generating enzyme. J Clin Biochem Nutr
86. Wind S, Beuerlein K, Armitage ME, Taye A, Kumar
     AH, Janowitz D Neff C, Shah AM, Wingler K,              2012; 50: 9-22.
     Schmidt HH. Oxidative stress and endothelial
     dysfunction in aortas of aged spontaneously             93. Zhang L, Sheppard OR, Shah AM, Brewer AC.
     hypertensive rats by NOX1/2 is reversed by NADPH
     oxidase inhibition. Hypertension 2010; 56: 490-7.       Positive regulation of the NADPH oxidase NOX4
87. Paravicini TM, Chrissobolis S, Drummond GR Sobey
     CG. Increased NADPH oxidase activity and Nox4           promoter in vascular smooth muscle cells by E2F.
     expression during chronic hypertension is associated
     with enhanced cerebral vasodilatation to NADPH in       Free Radic Biol Med 2008; 45: 679-85.
     vivo. Stroke 2004; 35: 584-9.
88. Mollnau H, Wendt M, Szöcs K, Lassègue B, Schulz          94. Katsuyama M, Hirai H, Iwata K, Ibi M, Matsuno K,
     E, Oelze M, Li H, Bodenschatz M, August M,
     Kleschyov AL, Tsilimingas N, Walter U, Förstermann      Matsumoto M, Yabe-Nishimura C. Sp3 transcription
     U, Meinertz T, Griendling K, Münzel T. Effects of
     angiotensin II infusion on the expression and function  factor is crucial for transcriptional activation of the
     of NAD(P)H oxidase and components of nitric
     oxide/cGMP signaling. Circ Res 2002; 90: E58-65.        human NOX4 gene. FEBS J 2011; 278: 964-72.
89. Nishiyama A, Yao L, Nagai Y, Miyata K, Yoshizumi
     M, Kagami S, Kondo S, Kiyomoto H, Shokoji T,            95. Siuda D, Zechner U, El Hajj N, Prawitt D, Langer D,

                                                             Xia N, Horke S, Pautz A, Kleinert H, Förstermann U,

                                                             Li H. Transcriptional regulation of Nox4 by histone

                                                             deacetylases in human endothelial cells. Basic Res

                                                             Cardiol 2012; 107: 283.

                                                             96. Paneni F, Osto E, Costantino S, Mateescu B, Briand

                                                             S, Coppolino G, Perna E, Mocharla P, Akhmedov A,

                                                             Kubant R, Rohrer L, Malinski T, Camici GG, Matter

                                                             CM, Mechta-Grigoriou F, Volpe M, Lüscher TF,

                                                             Cosentino F. Deletion of the activated protein-1

                                                             transcription factor JunD induces oxidative stress and

                                                             accelerates age-related endothelial dysfunction.

                                                             Circulation 2013; 127: 1229-40, e1-21.

                                                             97. Varga ZV, Kupai K, Szucs G, Gáspár R, Pálóczi J,

                                                             Faragó N, Zvara A, Puskás LG, Rázga Z, Tiszlavicz

                                                             L, Bencsik P, Görbe A, Csonka C, Ferdinandy P,

                                                             Csont T. MicroRNA-25-dependent up-regulation of

                                                             NADPH oxidase 4 (NOX4) mediat es

                                                             hypercholesterolemia-induced      oxidative/nitrative

                                                             stress and subsequent dysfunction in the heart. J Mol

                                                             Cell Cardiol 2013; 62: 111-21.

                                                             98. Peshavariya H, Jiang F, Taylor CJ, Selemidis S,

                                                             Chang CW, Dusting GJ. Translation-linked mRNA

                                                             destabilization accompanying serum-induced Nox4

                                                             expression in human endothelial cells. Antioxid

                                                             Redox Signal 2009; 11: 2399-408.

                                                             99. Raaz U, Toh R, Maegdefessel L, Adam M, Nakagami

                                                             F, Emrich FC, Spin JM, Tsao PS. Hemodynamic

                                                             regulation of reactive oxygen species: implications for

@Real Academia Nacional de Farmacia. Spain                                                                     143
   58   59   60   61   62   63   64   65   66   67   68