Page 62 - 81_02
P. 62
57. Lassègue B, Sorescu D, Szöcs K, Yin QQ, Akers M, Andrea Aguado et al.
Zhang Y, Grant SL, Lambeth JD, Griendling KK.
Novel gp91(phox) homologues in vascular smooth human atherosclerosis. Circulation 2002; 105: 1429-
muscle cells: nox1 mediates angiotensin II-induced 35.
superoxide formation and redox-sensitive signaling 68. Kalinina N, Agrotis A, Tararak E, Antropova Y,
pathways. Circ Res 2001; 88: 888-94. Kanellakis P, Ilyinskaya O, Quinn MT, Smirnov V,
Bobik A. Cytochrome b558-dependent NAD(P)H
58. Briones AM, Tabet F, Callera GE, Montezano AC, oxidase-phox units in smooth muscle and
Yogi A, He Y, Quinn MT, Salaices M, Touyz RM. macrophages of atherosclerotic lesions. Arterioscler
Differential regulation of Nox1, Nox2 and Nox4 in Thromb Vasc Biol 2002; 22: 2037-43.
vascular smooth muscle cells from WKY and SHR. J 69. Bengtsson SH, Gulluyan LM, Dusting GJ, Drummond
Am Soc Hypertens 2011; 5: 137-53. GR. Novel isoforms of NADPH oxidase in vascular
physiology and pathophysiology. Clin Exp Pharmacol
59. Katsuyama M, Fan C, Arakawa N, Nishinaka T, Physiol 2003; 30: 849-54.
Miyagishi M, Taira K, Yabe-Nishimura C. Essential 70. Cevik MO, Katsuyama M, Kanda S, Kaneko T, Iwata
role of ATF-1 in induction of NOX1, a catalytic K, Ibi M, Matsuno K, Kakehi T, Cui W, Sasaki M,
subunit of NADPH oxidase: involvement of Yabe-Nishimura C. The AP-1 site is essential for the
mitochondrial respiratory chain. Biochem J 2005; promoter activity of NOX1/NADPH oxidase, a
386(Pt 2): 255-61. vascular superoxide-producing enzyme: possible
involvement of the ERK1/2-JunB pathway. Biochem
60. Manea A, Tanase LI, Raicu M, Simionescu M. Biophys Res Commun 2008; 374: 351-5.
JAK/STAT Signaling Pathway Regulates Nox1 and 71. Manea A, Tanase LI, Raicu M, Simionescu M.
Nox4-Based NADPH Oxidase in Human Aortic Transcriptional regulation of NADPH oxidase
Smooth Muscle Cells. Arterioscler Thromb Vasc Biol isoforms, Nox1 and Nox4, by nuclear factor-kappaB
2010a; 30: 105-12. in human aortic smooth muscle cells. Biochem
Biophys Res Commun 2010b; 396: 901-7.
61. Martín A, Perez-Girón JV, Hernanz R, Palacios R, 72. Aguado A, Zhenyukh O, Fischer T, Rodríguez C,
Briones AM, Fortuño A, Zalba G, Salaices M, Alonso Martínez J, Martínez-Revelles S, Aras R, Dixon DA,
MJ. Peroxisome proliferator-activated receptor-? Briones AM, Salaices M. Different regulation of
activation reduces cyclooxygenase-2 expression in vascular NOX-1 and NOX-4 expressions by
vascular smooth muscle cells from hypertensive rats interleukin-1ß and angiotensin II. Frontiers in
by interfering with oxidative stress. J Hypertens 2012; Cardiovascular Biology 2014. Barcelona (July 2014).
30: 315-26. Cardiovascular Research 07/2014 103 (suppl 1):S131
73. Hilenski LL, Clempus RE, Quinn MT, Lambeth JD,
62. Wang P, Tang F, Li R, Zhang H, Chen S, Liu P, Griendling KK. Distinct subcellular localizations of
Huang H. Contribution of different Nox homologues Nox1 and Nox4 in vascular smooth muscle cells.
to cardiac remodeling in two-kidney two-clip Arterioscler Thromb Vasc Biol 2004; 24: 677-83.
renovascular hypertensive rats: effect of valsartan. 74. Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF Jr.
Pharmacol Res 2007; 55: 408-17. Regulation of ROS signal transduction by NADPH
oxidase 4 localization. J Cell Biol 2008; 181: 1129-39.
63. Nakano D, Kurumazuka D, Nagai Y, Nishiyama A, 75. Helmcke I, Heumüller S, Tikkanen R, Schröder K,
Kiso Y, Matsumura Y. Dietary sesamin suppresses Brandes RP. Identification of structural elements in
aortic NADPH oxidase in DOCA salt hypertensive Nox1 and Nox4 controlling localization and activity.
rats. Clin Exp Pharmacol Physiol 2008; 35: 324-6. Antioxid Redox Signal 2009; 11: 1279-87.
76. Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt
64. Martínez-Revelles S, Avendaño MS, García- HH, Harrison DG, Griendling KK. Distinct roles of
Redonodo AB, Alvarez Y, Aguado A, Pérez-Girón Nox1 and Nox4 in basal and angiotensin II-stimulated
JV, García-Redondo L, Esteban V, Redondo JM, superoxide and hydrogen peroxide production. Free
Alonso MJ, Briones AM, Salaices M. Reciprocal Radic Biol Med 2008; 45: 1340-51.
relationship between reactive oxygen species and 77. Takac I, Schröder K, Zhang L, Lardy B, Anilkumar N,
cyclooxygenase-2 and vascular dysfunction in Lambeth JD, Shah AM, Morel F, and Brandes RP.
hypertension. Antioxid Redox Signal 2013; 18: 51-65. The E-loop is involved in hydrogen peroxide
formation by the NADPH oxidase Nox4. J Biol Chem
65. Szöcs K, Lassègue B, Sorescu D, Hilenski LL, Valppu 2011; 286: 13304-13.
L, Couse TL, Wilcox JN, Quinn MT, Lambeth JD, 78. Mittal M, Roth M, König P, Hofmann S, Dony E,
Griendling KK. Upregulation of Nox-based NAD(P)H Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA,
oxidases in restenosis after carotid injury. Arterioscler Kwapiszewska G, Kummer W, Klepetko W, Hoda
Thromb Vasc Biol 2002; 22: 21-7. MA, Fink L, Hänze J, Seeger W, Grimminger F,
Schmidt HH, Weissmann N. Hypoxia-dependent
66. Paravicini TM, Gulluyan LM, Dusting GJ, Drummond regulation of nonphagocytic NADPH oxidase subunit
GR. Increased NADPH oxidase activity, gp91phox
expression, and endothelium-dependent @Real Academia Nacional de Farmacia. Spain
vasorelaxation during neointima formation in rabbits.
Circ Res 2002; 91: 54-61.
67. Sorescu D, Weiss D, Lassègue B, Clempus RE,Szocs
K, Sorescu GP, Valppu L, Quinn MT, Lambeth JD,
Vega JD, Taylor WR, Griendling KK. Superoxide
production and expression of nox family proteins in
142