Page 114 - 79_04
P. 114
Alexia
Gómez
&
col.
2.
Barja,
G.;
Cadenas,
S.;
Rojas,
C.;
Pérez--Campo,
R.;
López--Torres,
M.,
Low
mitochondrial
free
radical
production
per
unit
O2
consumption
can
explain
the
simultaneous
presence
of
high
longevity
and
high
aerobic
metabolic
rate
in
birds.
Free
Rad
Res
1994;
21,
317–327
3.
Barja,
G.;
Mitochondrial
oxygen
consumption
and
reactive
oxygen
species
production
are
independently
modulated:
implications
for
aging
studies.
Rejuv
Res
2007;
10,
215–224
4.
Pamplona,
R.;
Portero
Otín,
M.;
Riba,
D.;
Ruiz,
C.;
Prat,
J.;
Bellmunt,
M.J.;
Barja,
G.
Mitochondrial
membrane
peroxidizability
index
is
inversely
related
to
maximum
life
span
in
mammals.
J
Lipid
Res
1998;
39,
1989--94
5.
Hulbert,
A.J.;
Pamplona,
R.;
Buffestein,
R.;
Buttemer,
W.A.
Life
and
death:
metabolic
rate,
membrane
composition
and
life
span
of
animals.
Physiological
Reviews
2007;
87,
1175--
1213
6.
Hagopian,
K.;
Chen,
Y.;
Simmons
Domer,
K.;
Soo
Hoo,
R.;
Bentley,
T.;
McDonald,
R.B.;
Ramsey,
J.J.
Caloric
restriction
influences
hydrogen
peroxide
generation
in
mitochondrial
sub--populations
from
mouse
liver.
J
Bioenerg
Biomembr
2011;
43,
227--36
7.
Gredilla,
R.;
Barja,
G.
Caloric
restriction,
aging
and
oxidative
stress.
Endocrinology
2005;
146,
3713–3717
8.
Sanz,
A.;
Caro,
P.;
Barja,
G.
Protein
restriction
without
strong
caloric
restriction
decreases
mitochondrial
oxygen
radical
production
and
oxidative
DNA
damage
in
rat
liver.
J
Bioenerg
Biomembr
2004;
36,
545–552
9.
Sanz,
A.;
Caro,
P.;
Ayala,
V.;
Portero--Otin,
M.;
Pamplona,
R.;
Barja,
G.
Methionine
restriction
decreases
mitochondrial
oxygen
radical
generation
and
leak
as
well
as
oxidative
damage
to
mitochondrial
DNA
and
proteins.
FASEB
J
2006a;
20,
1064–1073
10.
Pamplona,
R.;
Barja,
G.
An
evolutionary
comparative
scan
for
longevity--related
oxidative
stress
resistance
mechanisms
in
homeotherms.
Biogerontology
2011;
12,
409:35
11.
Shmookler
Reis,
R.J.;
Xu,
L.;
Lee,
H.;
Chae,
M.;
Thaden,
J.J.;
Bharill,
P.;
Tazearslan,
C.;
Siegel,
C.;
Alla,
R.;
Zimniak,
P.;
Ayyadevara,
S.
Modulation
of
lipid
biosynthesis
contributes
to
stress
resistance
and
longevity
of
C.
elegans
mutants.
Aging
2011;
3,
125–147
12.
Hulbert,
A.J.
Metabolism
and
longevity:
Is
there
a
role
for
membrane
fatty
acids?
Integr
Comp
Biol
2010;
50,
808--17
13.
Naudi,
A.;
Jove,
M.;
Ayala,
V.;
Portero--Otin,
M.;
Barja,
G.;
Pamplona,
R.
Regulation
of
membrane
unsaturation
as
antioxidant
adaptive
mechanism
in
long--lived
animal
species.
Free
Rad
Antiox
2011;
1,
3--12
14.
Pratt,
D.A.;
Tallman,
K.A.;
Porter,
N.A.
Free
Radical
Oxidation
of
Polyunsaturated
Lipids:
New
Mechanistic
Insights
and
the
Development
of
Peroxyl
Radical
Clocks.
Acc
Chem
Res
2011;
44,
458--67
15.
Holman,
R.T.
Autoxidation
of
fats
and
related
substances.
In:
Holman
RT,
Lundberg
WO,
Malkin
T
(eds)
Progress
in
chemistry
of
fats
and
other
lipids.
Pergamon
Press,
London,
1954;
51–98
16.
Pamplona,
R.;
Barja,
G.;
Portero--Otín,
M.
Membrane
fatty
acid
unsaturation,
protection
against
oxidative
stress,
and
maximum
life
span:
a
homeoviscous--longevity
adaptation.
Ann
New
York
Acad
Sci
2002;
959,
475--490
17.
Liang,
H.;
Masoro,
Nelson,
J.F.;
Strong,
R.;
McMahan,
C.A.;
Richardson,
A.
Genetic
mouse
models
of
extended
lifespan.
Exp
Gerontol,
2003;
38,
1353–1364
18.
Selman,
C.;
Withers,
D.J.
Mammalian
models
of
extended
healthy
lifespan.
Philos
Trans
R
Soc
Lond
B
Biol
Sci
2011;
366,
99--107
19.
Narasimhan,
S.D.;
Yen,
K.;
Tissenbaum,
H.A.
Converging
pathways
in
lifespan
regulation.
Curr
Biol,
2009;
19,
657--6
20.
Selman,
C.;
Tullet,
J.M.A.;
Wieser,
D.;
Irvine,
E.;
Lingard,
S.J.;
Choudhury,
A.I.;
Claret,
M.;
Al--
Qassab,
H.;
Carmignac,
D.;
Ramadani,
F.;
Woods,
A.;
Robinson,
I.C.A.;
Schuster,
E.;
Batterham,
R.L.;
Kozma,
S.C.;
Thomas,
G.;
Carling,
D.;
Okkenhaugk,
K.;
Thornton,
J.M.;
630