Page 110 - 79_04
P. 110

Alexia	
  Gómez	
  &	
  col.	
  

	
  
        It	
  is	
  known	
  that	
  the	
  low	
  DBI	
  observed	
  in	
  long-­-lived	
  species	
  is	
  due	
  to	
  changes	
  

in	
   the	
   type	
   of	
   unsaturated	
   fatty	
   acids	
   in	
   the	
   membrane	
   composition.	
   There	
   is	
   a	
  
systematic	
   redistribution	
   between	
   the	
   type	
   of	
   PUFAs	
   present	
   from	
   the	
   highly	
  
unsaturated	
   docosahexaenoic	
   (22:6n-­-3)	
   and	
   sometimes	
   arachidonic	
   (20:4n-­-6)	
  
acids	
   in	
   short-­-lived	
   species	
   to	
   the	
   less	
   unsaturated	
   linoleic	
   acid	
   (18:2n-­-6)	
   and,	
   in	
  
some	
   cases,	
   linolenic	
   acid	
   (18:3n-­-3)	
   in	
   the	
   long-­-lived	
   ones	
   at	
   mitochondrial	
   and	
  
tissue	
   levels	
   (16).	
   Among	
   these,	
   the	
   fatty	
   acid	
   contributing	
   most	
   to	
   decrease	
   the	
  
global	
   fatty	
   acid	
   unsaturation	
   degree	
   in	
   long-­-lived	
   animals	
   is	
   22:6n-­-3.	
   With	
   the	
  
purpose	
   of	
   checking	
   if	
   similar	
   changes	
   occur	
   in	
   our	
   model,	
   we	
   measured	
   the	
   full	
  
fatty	
   acid	
   composition	
   of	
   heart	
   mitochondria	
   membranes.	
   We	
   found	
   that	
   atenolol	
  
treatment	
   in	
   the	
   Wistar	
   rat	
   heart	
   leads	
   to	
   variations	
   in	
   several	
   fatty	
   acids,	
   but	
  
among	
   them,	
   the	
   most	
   important,	
   quantitatively,	
   was	
   the	
   decrease	
   in	
   the	
   highly	
  
unsaturated	
   22:6n-­-3,	
   which	
   was	
   responsible	
   to	
   a	
   great	
   extent	
   for	
   the	
   decrease	
   in	
  
the	
   PI.	
   This	
   fatty	
   acid	
   is	
   present	
   in	
   tissue	
   cellular	
   membranes	
   at	
   lower	
   levels	
   in	
  
long-­-lived	
   than	
   in	
   short-­-lived	
   animals,	
   including	
   the	
   long-­-lived	
   naked	
   mole-­-rats	
  
(47)	
   and	
   it	
   also	
   decreases	
   after	
   atenolol	
   treatment	
   in	
   C57BL/6	
   mice	
   (38).	
   In	
   the	
  
present	
  study,	
  moreover,	
  we	
  found	
  other	
  atenolol-­-induced	
  decreases	
  in	
  fatty	
  acids	
  
which	
   were	
   involved	
   in	
   the	
   decrease	
   of	
   fatty	
   acid	
   unsaturation	
   (lower	
   PI):	
  
decreases	
   in	
   20:4n-­-6,	
   22:4n-­-6,	
   22:5n-­-6,	
   22:5n-­-3	
   and	
   22:6n-­-3,	
   whereas	
   18:2n-­-6	
  
increased.	
   It	
   is	
   also	
   interesting	
   that	
   in	
   the	
   senescence-­-accelerated	
   mouse	
   (SAM)	
  
strain,	
   the	
   SAM-­-prone	
   mice	
   had	
   greater	
   levels	
   of	
   the	
   highly	
   polyunsaturated	
  
peroxidation-­-prone	
   fatty	
   acids	
   22:6	
   n-­-3	
   and	
   20:4n-­-6	
   and	
   lower	
   levels	
   of	
   the	
   less	
  
peroxidation-­-prone	
  18:2n-­-6	
  PUFA	
  in	
  their	
  membranes,	
  and	
  consequently	
  they	
  had	
  
a	
   greater	
   PI	
   than	
   the	
   SAM-­-resistant	
   mice	
   (48,49).	
   SAM-­-prone	
   mice	
   also	
   showed	
  
greater	
  degree	
  of	
  lipid	
  peroxides	
  in	
  their	
  tissues	
  than	
  SAM-­-resistant	
  mice	
  (50).	
  

        What	
   are	
   the	
   consequences	
   of	
   this	
   decrease	
   in	
   PI?	
   A	
   low	
   PI	
   (sensitivity	
   to	
  
peroxidation)	
   and	
   DBI	
   (double	
   bound	
   index)	
   confer	
   higher	
   resistance	
   of	
  
membranes	
   to	
   lipid	
   peroxidation	
   and	
   lower	
   lipoxidation-­-dependent	
   damage	
   to	
  
macromolecules.	
  Previous	
  studies	
  have	
  shown	
  that	
  the	
  heart	
  of	
  long-­-lived	
  animals	
  
has	
   lower	
   levels	
   of	
   MDAL,	
   a	
   specific	
   marker	
   of	
   lipoxidation-­-dependent	
   damage	
   to	
  
proteins,	
   compared	
   to	
   short-­-lived	
   species	
   (26).	
   In	
   the	
   present	
   study	
   the	
   fatty	
   acid	
  
unsaturation	
   decrease	
   (lower	
   PI)	
   after	
   atenolol	
   treatment	
   correlated	
   with	
   a	
  
remarkable	
   decrease	
   in	
   MDAL	
   (49%	
   lower	
   in	
   the	
   atenolol	
   group).	
   Lipid	
  
peroxidation	
   generates	
   products	
   like	
   MDAL	
   or	
   hydroxynonenal,	
   but	
   it	
   also	
  
produces	
  secondary	
  free	
  radicals.	
  The	
  decreased	
  fatty	
  acid	
  unsaturation	
  degree	
  in	
  
the	
   atenolol	
   group	
   could	
   thus	
   be	
   responsible	
   for	
   a	
   lower	
   lipid-­-derived	
   secondary	
  
free	
   radical	
   formation,	
   decreased	
   specific	
   lipoxidation	
   markers	
   like	
   MDAL	
   and	
  
damage	
  to	
  other	
  macromolecules	
  (51).	
  	
  

        On	
  the	
  other	
  hand,	
  there	
  were	
  no	
  changes	
  in	
  the	
  protein	
  oxidation	
  markers	
  
measured	
  (GSA	
  and	
  AASA),	
  but	
  in	
  contrast,	
  protein	
  glycoxidation,	
  quantified	
  as	
  the	
  

626	
  

	
  
   105   106   107   108   109   110   111   112   113   114   115