Page 116 - 79_04
P. 116
Alexia
Gómez
&
col.
39.
López--Torres,
M.;
Barja,
G.
Lowered
methionine
ingestion
as
responsible
for
the
decrease
in
rodent
mitochondrial
oxidative
stress
in
protein
and
dietary
restriction.
Possible
implications
for
humans.
Biochim
Biophys
Acta
2008;
1780,
1337--1347
40.
Pamplona,
R.;
Barja,
G.
Highly
resistant
macromolecular
components
and
low
rate
of
generation
of
endogenous
damage:
two
key
traits
of
longevity.
Ageing
Res
Rev
2007;
6,
189–210
41.
Pamplona,
R.;
Portero--Otín,
M.;
Requena,
J.R.;
Thorpe,
S.R.;
Herrero,
A.;
Barja,
G.
A
low
degree
of
fatty
acid
unsaturation
leads
to
lower
lipid
peroxidation
and
lipoxidation--
derived
protein
modification
in
heart
mitochondria
of
the
longevous
pigeon
than
in
the
short--lived
rat.
Mech
Ageing
Dev
1999;
106,
283--296
42.
Buttemer,
W.A.;
Battam,
H.;
Hulbert,
A.J.
Fowl
play
and
the
price
of
petrel:
long--living
Procellariformes
have
peroxidation--resistant
membrane
composition
compared
with
short--living
Galliformes.
Biol
Lett
2008;
4,
351--354
43.
Mitchell,
T.W.;
Buffenstein,
R.;
Hulbert,
A.J.
Membrane
phospholipid
composition
may
contribute
to
exceptional
longevity
of
the
naked
mole--rat
(Heterocephalus
glaber):
A
comparative
study
using
shotgun
lipidomics.
Exp
Gerontol
2007;
42,
1053--1062
44.
Hulbert,
A.J.;
Beard,
L.A.;
Grigg,
G.C.
The
exceptional
longevity
of
an
egg--laying
mammal,
the
short--beaked
echidna
(Tachyglossus
aculeatus)
is
associated
with
peroxidation--
resistant
membrane
composition.
Exp
Gerontol
2008;
43,
729--733
45.
Haddad,
L.S.;
Kelbert,
L.;
Hulbert,
A.J.
Extended
longevity
of
queen
honey
bees
compared
to
workers
is
associated
with
peroxidation--resistamt
membranes.
Exp
Gerontol
2007;
42,
601--609
46.
Hulbert,
A.J.;
Faulks,
S.C.;
Harper,
J.M.;
Miller,
R.A.;
Buffenstein,
R.
Extended
longevity
of
wild--derived
mice
is
associated
with
peroxidation--resistant
membranes.
Mech
Ageing
Dev
2006;
127,
653--657
47.
Buffenstein,
R.
The
naked
mole--rat:
a
new
long--living
model
for
human
aging
research?
J
Gerontol
2005;
60,
1369–1377
48.
Choi,
J.H.;
Kim,
J.I.;
Kim,
D.W.;
Moon,
Y.S.;
Chung,
H.Y.;
Yu,
B.P.
Analysis
of
lipid
composition
and
hydroxyl
radicals
in
brain
membranes
of
senescence--accelerated
mice.
Age
1996;
19,
1–5
49.
Park,
J.W.;
Choi,
C.H.;
Kim,
M.S.;
Chung,
M.H.
Oxidative
status
in
senescence--accelerated
mice.
J
Gerontol
1996;
51,
B337–B345
50.
Matsugo,
S.;
Kitagawa,
T.;
Minami,
S.;
Esashi,
Y.;
Oomura,
Y.;
Tokumaru,
S.;
Kojo,
S.;
Matsushima,
K.;
Sasaki,
K.
Age--dependent
changes
in
lipid
peroxide
levels
in
peripheral
organs,
but
not
in
brain,
in
senescence--accelerated
mice.
Neurosci
Lett
2000;
278,
105–
108
51.
Spiteller,
G.
Is
lipid
peroxidation
of
polyunsaturated
fatty
acids
the
only
source
of
free
radicals
that
induce
aging
and
age--related
diseases?
Rejuv
Res
2010;
13,
91--103
52.
Herrero,
A.;
Portero--Otín,
M.;
Bellmunt,
M.J.;
Pamplona,
R.;
Barja,
G.
Effect
of
the
degree
of
fatty
acid
unsaturation
of
rat
heart
mitochondria
on
their
rates
of
H2O2
production
and
lipid
and
protein
oxidative
damage.
Mech
Ageing
Dev
2001;
122,
427--443
53.
Guillou,
H.;
Zadravec,
D.;
Martin,
P.G.;
Jacobsson,
A.
The
key
roles
of
elongases
and
desaturases
in
mammalian
fatty
acid
metabolism:
Insights
from
transgenic
mice.
Prog
Lipid
Res
2010;
49,
186--99
54.
Nakamura,
M.T.;
Nara,
T.Y.
Structure,
function,
and
dietary
regulation
of
delta6,
delta5,
and
delta9
desaturases.
Annu
Rev
Nutr
2004;
24,
345--76
55.
Hulbert,
A.J.;
Rana,
T.;
Couture,
P.
The
acyl
composition
of
mammalian
phospholipids:
an
allometric
analysis.
Comput
Biochem
Physiol
B
Biochem
Mol
Biol
2002;
132,
515–527
632