Page 112 - 79_04
P. 112

Alexia	
  Gómez	
  &	
  col.	
  

	
  
n-­-6	
   and	
   n-­-3	
   desaturases	
   were	
   also	
   significantly	
   lower	
   in	
   the	
   atenolol	
   treated	
  
animals.	
   This	
   fact	
   can	
   explain	
   the	
   fatty	
   acid	
   unsaturation	
   decrease	
   in	
   the	
   atenolol	
  
group.	
   Desaturation	
   pathways	
   would	
   make	
   available	
   in	
   situ	
   the	
   n-­-6	
   and	
   n-­-3	
   fatty	
  
acids	
   to	
   phospholipid	
   acyltransferases	
   in	
   order	
   to	
   remodel	
   the	
   phospholipid	
   acyl	
  
groups.	
  The	
  fact	
  that	
  acyltransferase/n-­-6	
  desaturase	
  activity	
  ratio	
  is	
  about	
  10:1	
  in	
  
tissues	
   (56)	
   reinforces	
   the	
   idea	
   that	
   regulation	
   of	
   desaturases	
   can	
   be	
   the	
   main	
  
limiting	
   factor	
   responsible	
   for	
   the	
   observed	
   fatty	
   acid	
   unsaturation-­-longevity	
  
relationship	
   (40),	
   as	
   well	
   as	
   for	
   the	
   fatty	
   acid	
   changes	
   observed	
   in	
   the	
   present	
  
study.	
   On	
   the	
   other	
   hand,	
   in	
   this	
   study	
   we	
   found	
   a	
   decrease	
   in	
   the	
   following	
  
elongase	
  activities	
  in	
  the	
  atenolol	
  group:	
  ELOVL	
  1/3,	
  which	
  catalyzes	
  the	
  formation	
  
of	
   saturated	
   fatty	
   acids	
   containing	
   as	
   many	
   as	
   26-­-carbons;	
   ELOVL	
   5	
   (n-­-6),	
   that	
  
catalyzes	
   the	
   initial	
   and	
   rate-­-limiting	
   desaturation	
   of	
   C18:2n-­-6	
   and	
   C18:3n-­-3	
   for	
  
the	
   production	
   of	
   longer-­-chain	
   PUFAs;	
   and	
   ELOVL	
   2/5	
   (n-­-6)	
   and	
   (n-­-3)	
   which	
   are	
  
involved	
   in	
   PUFA	
   elongation	
   from	
   C20:3n-­-6	
   and	
   C20:4n-­-3.	
   The	
   lower	
   elongase	
  
activities	
   in	
   atenolol	
   treated	
   animals	
   may	
   be	
   responsible	
   for	
   the	
   decrease	
   in	
   the	
  
acyl	
  chain	
  length	
  in	
  this	
  group.	
  

        An	
  intact	
  respiratory	
  chain	
  is	
  needed	
  to	
  get	
  the	
  maximum	
  capacity	
  available	
  
for	
   mitochondrial	
   energy	
   production.	
   Besides,	
   studies	
   in	
   rodents	
   show	
   that	
   the	
  
amount	
   of	
   respiratory	
   complexes	
   in	
   the	
   respiratory	
   chain	
   can	
   change	
   in	
  
experimental	
   modifications	
   that	
   extend	
   life-­-span.	
   Therefore,	
   we	
   measured	
   the	
  
amounts	
  of	
  the	
  four	
  respiratory	
  complexes	
  in	
  our	
  study.	
  There	
  were	
  no	
  differences	
  
in	
   the	
   amount	
   of	
   any	
   of	
   the	
   complexes	
   except	
   in	
   the	
   NDUFA9	
   complex	
   I	
   subunit,	
  
which	
   was	
   lower	
   in	
   the	
   atenolol	
   group.	
   In	
   previous	
   studies	
   of	
   methionine	
  
restriction	
   (57)	
   and	
   caloric	
   restriction	
   (58)	
   it	
   has	
   been	
   observed	
   that	
   the	
   amount	
  
of	
   complex	
   I	
   was	
   decreased.	
   It	
   is	
   well	
   known	
   that	
   both	
   complex	
   I	
   and	
   complex	
   III	
  
produce	
   ROS	
   in	
   isolated	
   mitochondria	
   (23,59).	
   However,	
   the	
   difference	
   in	
   ROS	
  
production	
   between	
   species	
   with	
   different	
   longevities	
   and	
   between	
   caloric	
  
restricted	
   and	
   ad	
   libitum-­-fed	
   animals	
   seems	
   to	
   come	
   exclusively	
   from	
   complex	
   I	
  
(23).	
  Then,	
  the	
  slight	
  decrease	
  observed	
  in	
  the	
  complex	
  I	
  amount	
  in	
  our	
  study	
  can	
  
be	
   responsible	
   for	
   the	
   non-­-significant	
   trend	
   to	
   decrease	
   mitochondrial	
   ROS	
  
production	
  with	
  complex	
  I	
  linked	
  substrates	
  (glutamate/malate),	
  and	
  probably	
  the	
  
adaptive	
   response	
   of	
   the	
   MnSOD	
   content.	
   This	
   decrease	
   would	
   not	
   be	
   as	
  
remarkable	
  as	
  in	
  the	
  case	
  of	
  caloric	
  or	
  methionine	
  restriction,	
  in	
  which	
  the	
  time	
  of	
  
treatment	
   was	
   longer	
   (7	
   weeks)	
   in	
   contrast	
   to	
   the	
   15	
   days	
   of	
   atenolol	
   treatment	
  
implemented	
  here.	
  

        AIF	
   is	
   a	
   mitochondrial	
   flavoprotein	
   involved	
   in	
   the	
   assembly/manteinance	
  
of	
  complex	
  I,	
  and	
  besides	
  its	
  role	
  in	
  apoptosis,	
  it	
  is	
  also	
  required	
  for	
  mitochondrial	
  
oxidative	
   phosphorylation	
   (22).	
   Similarly	
   to	
   what	
   was	
   previously	
   reported	
   in	
  
atenolol	
   treated	
   mice	
   (38),	
   in	
   the	
   present	
   investigation	
   AIF	
   did	
   not	
   change	
   after	
  
atenolol	
  treatment,	
  suggesting	
  that	
  the	
  decrease	
  in	
  apoptosis	
  that	
  was	
  observed	
  in	
  

628	
  

	
  
   107   108   109   110   111   112   113   114   115   116   117