Page 57 - 79_02
P. 57
Nuevas
estrategias
en
terapia
antitumoral
basadas
en
la
inducción
de
la
apoptosis
10. Satyam,
A.;
Hocker.
MD.;
Kane--Maguire,
KA.;
Morgan,
AS.;
Villar,
HO.;
Lyttle,
MH.
(1996)
Design,
synthesis,
and
evaluation
of
latent
alkylating
agents
activated
by
glutathione
S--
transferase.
J
Med
Chem
39(8),
1736--1747.
11. Lyttle,
MH.;
Satyam,
A.;
Hocker,
MD.;
et
al.
(1994)
Glutathione--Stransferase
activates
novel
alkylating
agents.
J
Med
Chem
37(10),
1501--1507.
12. Thévenin,
AF.;
Zony,
CL.;
Bahnson,
BJ.;
Colman,
RF.
(2011)
GSTpi
modulates
JNK
activity
through
a
direct
interaction
with
JNK
substrate,
ATF2.
Protein
Sci
20(5),
834--848.
13. Vergotea,
I.;
Finklerb,
N.;
Del
Campoc.
J.
et
al.
(2009)
Phase
3
randomised
study
of
canfosfamide
(Telcyta®,
TLK286)
versus
pegylated
liposomal
doxorubicin
or
topotecan
as
third--line
therapy
in
patients
with
platinum--refractory
or
–resistant
ovarian
cancer.
Eur
J
Cancer
45,
2324--2332.
14. Turella,
P.;
Filomeni,
G.;
Dupuis,
ML.
et
al.
(2006)
A
strong
glutathione
S--transferase
inhibitor
overcomes
the
p--glycoproteinmediated
resistance
in
tumour
cells.
6--(7--nitro--
2,1,3--benzoxadiazol--4--ylthio)hexanol
(NBDHEX)
triggers
a
caspasedependent
apoptosis
in
MDR1--expressing
leukemia
cells.
J
Biol
Chem
281,
23725--23732.
15. Filomeni,
G.;
Turella,
P.;
Dupuis,
ML.
et
al.
(2008)
6--(7--nitro--2,
1,
3--benzoxadiazol--4--
ylthio)hexanol,
a
specific
glutathione
Stransferase
inhibitor,
overcomes
the
multidrug
resistance
(MDR)--associated
protein
1--mediated
MDR
in
small
cell
lung
cancer.
Mol
Cancer
Ther
7,
371--379.
16. Pellizzari
Tregno,
F.;
Sau,
A.;
Pezzola,
S.
et
al.
(2009)
In
vitro
and
in
vivo
efficacy
of
6--(7--
nitro--2,
1,
3--benzoxadiazol--4--ylthio)hexanol
(NBDHEX)
on
human
melanoma.
Eur
J
Cancer
45,
2606--2617.
17. Tentori,
L.;
Dorio,
AS.;
Mazzon,
E.;
Muzi,
A.;
Sau,
A.;
Cuzzocrea,
S.
et
al.
(2011)
The
glutathione
transferase
inhibitor
6--(7--nitro--2,1,3--benzoxadiazol--4--ylthio)hexanol
(NBDHEX)
increases
temozolomide
efficacy
against
malignant
melanoma.
Eur
J
Cancer
45,
1219--1230.
18. Huang,
S.;
Shu,
L.;
Easton,
J.
et
al.
(2004)
Inhibition
of
Mammalian
Target
of
Rapamycin
Activates
Apoptosis
Signal--regulating
Kinase
1
Signaling
by
Suppressing
Protein
Phosphatase
5
Activity.
J
Biol
Chem
279(35),
36490--36496.
19. Temkin,
SM.;
Yamada,
SD.;
Fleming,
GF.
(2010)
A
phase
I
study
of
weekly
temsirolimus
and
topotecan
in
the
treatment
of
advanced
and/or
recurrent
gynecologic
malignancies.
Gynecol
Oncol
117,
473--476.
20. Yap,
TA.;
Garrett1,
MD.;
Walton,
MI.;
Raynaud,
F.;
De
Bono,
JS.;
Workman,
P.
(2008)
Targeting
the
PI3K–AKT–mTOR
pathway:
progress,
pitfalls,
and
promises.
Curr
Opin
in
Pharmacol
8,
393--412.
21. Strimpakos,
AS.;
Karapanagiotou,
EM.;
Saif,
MW.;
Syrigos,
KN.
(2009)
The
role
of
mTOR
in
the
management
of
solid
tumors:
An
overview.
Cancer
Treat
Rev;
35:148--159.
22. Ciardiello
F.
(2005)
Epidermal
growth
factor
receptor
inhibitors
in
cancer
treatment.
Future
Oncol
1(2),
221--234.
23. Salomon,
DS.;
Brandt,
R.;
Ciardiello,
F.
et
al.
(1995)
Epidermal
growth
factorrelated
peptides
and
their
receptors
in
human
malignancies.
Crit
Rev
Oncol/Hematol
19,
183--232.
24. Dummer
Meira,
D.;
Nóbrega,
I.;
De
Almeida,
VH.;
Mororo,
JS.;
Cardoso,
AM.;
Silva,
R.
(2009)
Different
antiproliferative
effects
of
matuzumab
and
cetuximab
in
A431
cells
are
associated
with
persistent
activity
of
the
MAPK
pathway.
Eur
J
Cancer
45,
1265--1273.
25. Oh,
IJ.;
Jung--Ban,
H.;
Kim,
KS.;
Kim,
YC.
(2012)
Retreatment
of
gefitinib
in
patients
with
non--small--cell
lung
cancer
who
previously
controlled
to
gefitinib:
A
single--arm,
open--label,
phase
II
study.
Lung
Cancer
77,
121--127.
26. Chang,
SC.;
Chang,
CY.;
Chang,
SJ.;
Yuan,
MK.;
Lai,
YC.;
Liu,
YC.
(2013)
Gefitinib--Related
Interstitial
Lung
Disease
in
Taiwanese
Patients
With
Non–Small--Cell
Lung
Cancer.
Clin
Lung
Cancer
14(1),
55--61.
227