Page 87 - 81_04
P. 87
Mycobacterium tuberculosis. Expert Rev Anti Infect Carmen AvendaƱo
Ther 2012; 10: 971-81.
78. a) Harth G, Clemens DL, Horwitz MA. Glutamine
65. Masucci MG. Epstein-Barr virus oncogenesis and the synthetase of Mycobacterium tuberculosis-
ubiquitin-proteasome system. Oncogene 2004; 23: Extracellular release and characterization of its
2107-15. enzymatic activity. Proc Natl Acad Sc USA 1994; 91:
9342-46. b) Harth G, Horwitz MA. Inhibition of
66. Cole ST, Brosch R, Parkhill J, et al. Deciphering the Mycobacterium tuberculosis glutamine synthetase as a
biology of Mycobacterium tuberculosis from the novel antibiotic strategy against tuberculosis:
complete genome sequence. Nature 1998; 393: 537- demonstration of efficacy in vivo. Infect Immun 2003;
44. 71: 456-64. c) Mowbray SL, Kathiravan MK, Pandey
AA, Odell LR. Inhibition of Glutamine Synthetase: A
67. Arnold C. Molecular evolution of Mycobacterium Potential Drug Target in Mycobacterium tuberculosis.
tuberculosis. Clin Microbiol Infect 2007; 13: 120-8. Molecules 2014; 19: 13161-76.
68. Riccardi G, Pasca MR, Chiarelli LR, et al. The DprE1
enzyme, one of the most vulnerable targets of
Mycobacterium tuberculosis. Appl Microbiol
Biotechnol 2013; 97: 8841-8.
69. a) Neres J, Pojer F, Molteni E, et al. Structural basis for
benzothiazinone-mediated killing of Mycobacterium
tuberculosis. Sci Transl Med 2012; 4:150ra121. b)
Makarov V, Lechartier B, Zhang M, et al. Towards a
new combination therapy for tuberculosis with next
generation benzothiazinones. EMBO Mol Med 2014;
6: 372-83.
70. Neres J, Hartkoorn RC, Chiarelli LR, et al. 2-
Carboxyquinoxalines kill Mycobacterium tuberculosis
through noncovalent inhibition of DprE1. ACS Chem
Biol 2015; 10, 705-14.
71. Diacon AH, Pym A, Grobusch M, et al. The
diarylquinoline TMC207 for multidrug-resistant
tuberculosis. N Engl J Med 2009; 360: 2397-05.
72. a) Haagsma AC, Podasca I, Koul A, et al. Probing the
Interaction of the Diarylquinoline TMC207 with Its
Target Mycobacterial ATP Synthase. PLoS ONE
2011; 6: e23575. b) Lu P, Villellas C, Koul A, et al.
The ATP synthase inhibitor bedaquiline interferes
with small-molecule efflux in Mycobacterium
smegmatis. J Antibiot 2014; 67: 835-37.
73. Matsumoto M, Hashizume H, Tomishige T, et al.
OPC-67683, a nitro-dihydro-imidazooxazole
derivative with promising action against tuberculosis
in vitro and in mice. PLoS Med 2006; 3: e466.
74. Rayasam GV. MmpL3 a potential new target for
development of novel anti-tuberculosis drugs. Expert
Opin Ther Targets 2014; 18: 247-56.
75. Li K, Shurig-Bricio LA, Feng X, et al. Multitarget
Drug Discovery for Tuberculosis and Other Infectious
Diseases. J Med Chem 2014; 57, 3126-39.
76. Yang Y, Gao P, Liu Y, et al. A discovery of novel
Mycobacterium tuberculosis pantothenate synthetase
inhibitors based on the molecular mechanism of
actinomycin D inhibition. Bioorg Med Chem Lett
2011; 21: 3943-46.
77. Venkatraman J, Bhat J, Solapure SM, et al. (2012).
Screening, identification, and characterization of
mechanistically diverse inhibitors of the
Mycobacterium tuberculosis enzyme, pantothenate
kinase (CoaA). J Biomol Screen 2012; 17: 293-302.
356 @Real Academia Nacional de Farmacia. Spain