Page 87 - 81_04
P. 87

Mycobacterium tuberculosis. Expert Rev Anti Infect                                                           Carmen AvendaƱo
     Ther 2012; 10: 971-81.
                                                                 78. a) Harth G, Clemens DL, Horwitz MA. Glutamine
65. Masucci MG. Epstein-Barr virus oncogenesis and the                synthetase of Mycobacterium tuberculosis-
     ubiquitin-proteasome system. Oncogene 2004; 23:                  Extracellular release and characterization of its
     2107-15.                                                         enzymatic activity. Proc Natl Acad Sc USA 1994; 91:
                                                                      9342-46. b) Harth G, Horwitz MA. Inhibition of
66. Cole ST, Brosch R, Parkhill J, et al. Deciphering the             Mycobacterium tuberculosis glutamine synthetase as a
     biology of Mycobacterium tuberculosis from the                   novel antibiotic strategy against tuberculosis:
     complete genome sequence. Nature 1998; 393: 537-                 demonstration of efficacy in vivo. Infect Immun 2003;
     44.                                                              71: 456-64. c) Mowbray SL, Kathiravan MK, Pandey
                                                                      AA, Odell LR. Inhibition of Glutamine Synthetase: A
67. Arnold C. Molecular evolution of Mycobacterium                    Potential Drug Target in Mycobacterium tuberculosis.
     tuberculosis. Clin Microbiol Infect 2007; 13: 120-8.             Molecules 2014; 19: 13161-76.

68. Riccardi G, Pasca MR, Chiarelli LR, et al. The DprE1
     enzyme, one of the most vulnerable targets of
     Mycobacterium tuberculosis. Appl Microbiol
     Biotechnol 2013; 97: 8841-8.

69. a) Neres J, Pojer F, Molteni E, et al. Structural basis for
     benzothiazinone-mediated killing of Mycobacterium
     tuberculosis. Sci Transl Med 2012; 4:150ra121. b)
     Makarov V, Lechartier B, Zhang M, et al. Towards a
     new combination therapy for tuberculosis with next
     generation benzothiazinones. EMBO Mol Med 2014;
     6: 372-83.

70. Neres J, Hartkoorn RC, Chiarelli LR, et al. 2-
     Carboxyquinoxalines kill Mycobacterium tuberculosis
     through noncovalent inhibition of DprE1. ACS Chem
     Biol 2015; 10, 705-14.

71. Diacon AH, Pym A, Grobusch M, et al. The
     diarylquinoline TMC207 for multidrug-resistant
     tuberculosis. N Engl J Med 2009; 360: 2397-05.

72. a) Haagsma AC, Podasca I, Koul A, et al. Probing the
     Interaction of the Diarylquinoline TMC207 with Its
     Target Mycobacterial ATP Synthase. PLoS ONE
     2011; 6: e23575. b) Lu P, Villellas C, Koul A, et al.
     The ATP synthase inhibitor bedaquiline interferes
     with small-molecule efflux in Mycobacterium
     smegmatis. J Antibiot 2014; 67: 835-37.

73. Matsumoto M, Hashizume H, Tomishige T, et al.
     OPC-67683, a nitro-dihydro-imidazooxazole
     derivative with promising action against tuberculosis
     in vitro and in mice. PLoS Med 2006; 3: e466.

74. Rayasam GV. MmpL3 a potential new target for
     development of novel anti-tuberculosis drugs. Expert
     Opin Ther Targets 2014; 18: 247-56.

75. Li K, Shurig-Bricio LA, Feng X, et al. Multitarget
     Drug Discovery for Tuberculosis and Other Infectious
     Diseases. J Med Chem 2014; 57, 3126-39.

76. Yang Y, Gao P, Liu Y, et al. A discovery of novel
     Mycobacterium tuberculosis pantothenate synthetase
     inhibitors based on the molecular mechanism of
     actinomycin D inhibition. Bioorg Med Chem Lett
     2011; 21: 3943-46.

77. Venkatraman J, Bhat J, Solapure SM, et al. (2012).
     Screening, identification, and characterization of
     mechanistically diverse inhibitors of the
     Mycobacterium tuberculosis enzyme, pantothenate
     kinase (CoaA). J Biomol Screen 2012; 17: 293-302.

356 @Real Academia Nacional de Farmacia. Spain
   82   83   84   85   86   87   88   89   90   91   92