Page 84 - 79_02
P. 84

A.	
  Gómez	
  et	
  col.	
  

	
  
sólo	
   en	
   animales	
   viejos	
   que	
   coincide	
   con	
   meta-­-análisis	
   recientes	
   en	
   pacientes	
  
humanos.	
  

Palabras	
  clave:	
  Estrés	
  oxidativo;	
  ß-­-bloqueante;	
  Frecuencia	
  cardíaca.	
  

1.	
  INTRODUCTION	
  

        TA	
   new	
   mammalian	
   longevity	
   model	
   based	
   on	
   ß-­-adrenergic	
   receptor	
  
signaling	
   interruption	
   at	
   the	
   level	
   of	
   adenylyl	
   cyclase	
   has	
   reported	
   decreased	
   bone	
  
and	
  heart	
  aging	
  and	
  increases	
  in	
  mean	
  and	
  maximum	
  longevity	
  in	
  AC5	
  KO	
  (adenylyl	
  
cyclase	
   5	
   Knockout)	
   mice	
   (1).	
   We	
   have	
   previously	
   mimicked	
   this	
   model	
   with	
   the	
   ß-­-
blocker	
   atenolol	
   in	
   short-­-term	
   studies	
   (2),	
   in	
   which	
   we	
   have	
   successfully	
   modified	
  
one	
  of	
  the	
  only	
  two	
  known	
  traits	
  correlating	
  with	
  longevity	
  in	
  the	
  right	
  sense:	
  the	
  low	
  
degree	
  fatty	
  acid	
  unsaturation	
  of	
  the	
  cellular	
  membranes	
  of	
  the	
  tissues	
  of	
  long-­-lived	
  
animals.	
  

        Comparative	
  gerontological	
  studies	
  have	
  already	
  unveiled	
  two	
  traits	
  that	
  can	
  
explain	
   the	
   different	
   (maximum)	
   longevity	
   of	
   different	
   mammals:	
   long-­-lived	
   animal	
  
species	
   have	
   a	
   low	
   rate	
   of	
   mitochondrial	
   reactive	
   oxygen	
   species	
   production	
  
(mitROSp)	
  (3,	
  4)	
  and	
  a	
  low	
  unsaturation	
  degree	
  of	
  membrane	
  fatty	
  acids	
  (5,	
  6).	
  

        The	
  first	
  of	
  these	
  two	
  factors,	
  mitROSp,	
  can	
  be	
  experimentally	
  decreased	
  with	
  
dietary	
   manipulations	
   like	
   caloric	
   restriction	
   (7,	
   8),	
   protein	
   restriction	
   (9)	
   and	
  
methionine	
   restriction	
   (10).	
   But	
   the	
   second	
   one,	
   the	
   unsaturation	
   degree	
   of	
  
membrane	
   fatty	
   acids,	
   is	
   more	
   difficult	
   to	
   modify.	
   Increasing	
   dietary	
   saturated	
   fatty	
  
acids	
   have	
   unhealthy	
   effects	
   on	
   plasma	
   cholesterol	
   levels,	
   and	
   the	
   tissue	
   global	
   FA	
  
(fatty	
  acid)	
  unsaturation	
  is	
  homeostatically	
  regulated	
  in	
  mammalian	
  tissues	
  through	
  
control	
   of	
   gene	
   expression	
   (11).	
   Deficiency	
   of	
   essential	
   PUFAs	
   in	
   the	
   diet	
   leads	
   to	
  
strong	
   compensatory	
   increases	
   in	
   tissue	
   mead	
   acid	
   (20:3n-­-9,	
   synthesized	
   from	
  
18:1n-­-9),	
   a	
   known	
   diagnostic	
   marker	
   of	
   essential	
   FA	
   deficiency,	
   or	
   to	
   increases	
   in	
  
MUFAs	
   like	
   16:1n-­-7	
   and	
   18:1n-­-9	
   (12).	
   Homeostatic	
   changes	
   like	
   these	
   are	
  
responsible	
   for	
   the	
   failure	
   to	
   effectively	
   change	
   tissue	
   DBI	
   after	
   feeding	
   the	
   animals	
  
with	
  diets	
  differing	
  in	
  FA	
  unsaturation	
  (13,	
  14).	
  	
  

        A	
  low	
  unsaturation	
  degree	
  is	
  most	
  important	
  for	
  developing	
  a	
  high	
  longevity	
  
because	
  membrane	
  fatty	
  acid	
  double	
  bounds	
  are	
  most	
  susceptible	
  to	
  oxidative	
  attack	
  
due	
   to	
   two	
   reasons:	
   a)	
   oxygen	
   and	
   many	
   radical	
   species	
   are	
   several	
   times	
   more	
  
soluble	
   in	
   lipid	
   membrane	
   bilayers	
   than	
   in	
   the	
   aqueous	
   solution	
   (15);	
   b)	
   the	
  
sensitivity	
  of	
  membranes	
  to	
  lipid	
  peroxidation	
  increases	
  strongly	
  as	
  a	
  function	
  of	
  the	
  
number	
   of	
   double	
   bonds	
   per	
   fatty	
   acid	
   molecule.	
   A	
   lower	
   total	
   number	
   of	
   double	
  
bounds	
   of	
   membrane	
   fatty	
   acids	
   make	
   these	
   molecules	
   more	
   resistant	
   to	
   lipid	
  
peroxidation.	
   Polyunsaturated	
   fatty	
   acids	
   (PUFAs)	
   exhibit	
   the	
   highest	
   sensitivity	
   to	
  
ROS	
   induced	
   oxidative	
   damage	
   among	
   cellular	
   macromolecules,	
   and	
   this	
   sensitivity	
  
increases	
   as	
   a	
   function	
   of	
   the	
   number	
   of	
   double	
   bonds	
   per	
   fatty	
   acid	
   molecule	
  

254	
  	
  

	
  
   79   80   81   82   83   84   85   86   87   88   89