Page 113 - 79_01
P. 113

B.	
  Lizarbe	
  y	
  S.	
  Cerdán	
                                                                                                                      	
  

	
  

     36. Andrew,	
   R.D.,	
   et	
   al.(1981)	
   Dye	
   transfer	
   through	
   gap	
   junctions	
   between	
   neuroendocrine	
  
           cells	
  of	
  rat	
  hypothalamus.	
  Science.	
  211(4487):	
  p.	
  1187-­-9.	
  

     37. Jaffe,	
  L.F.(2008)	
  Calcium	
  waves.	
  Philos	
  Trans	
  R	
  Soc	
  Lond	
  B	
  Biol	
  Sci.	
  363(1495):	
  p.	
  1311-­-6.	
  

     38. Jaffe,	
  L.F.(2010)	
  Fast	
  calcium	
  waves.	
  Cell	
  Calcium.	
  48(2-­-3):	
  p.	
  102-­-13.	
  

     39. Lee,	
   J.H.,	
   et	
   al.(2005)	
   Manganese-­-enhanced	
   magnetic	
   resonance	
   imaging	
   of	
   mouse	
  
           brain	
   after	
   systemic	
   administration	
   of	
   MnCl2:	
   dose-­-dependent	
   and	
   temporal	
   evolution	
   of	
  
           T1	
  contrast.	
  Magn	
  Reson	
  Med.	
  53(3):	
  p.	
  640-­-8.	
  

     40. Just,	
  N.,	
  et	
  al.(2011)	
  Effect	
  of	
  manganese	
  chloride	
  on	
  the	
  neurochemical	
  profile	
  of	
  the	
  rat	
  
           hypothalamus.	
  J	
  Cereb	
  Blood	
  Flow	
  Metab.	
  31(12):	
  p.	
  2324-­-33.	
  

     41. Zwingmann,	
   C.,	
   D.	
   Leibfritz,	
   and	
   A.S.	
   Hazell(2003)	
   Energy	
   metabolism	
   in	
   astrocytes	
   and	
  
           neurons	
   treated	
   with	
   manganese:	
   relation	
   among	
   cell-­-specific	
   energy	
   failure,	
   glucose	
  
           metabolism,	
  and	
  intercellular	
  trafficking	
  using	
  multinuclear	
  NMR-­-spectroscopic	
  analysis.	
  J	
  
           Cereb	
  Blood	
  Flow	
  Metab.	
  23(6):	
  p.	
  756-­-71.	
  

     42. Zwingmann,	
   C.,	
   D.	
   Leibfritz,	
   and	
   A.S.	
   Hazell(2004)	
   Brain	
   energy	
   metabolism	
   in	
   a	
   sub-­-	
  
           acute	
  rat	
  model	
  of	
  manganese	
  neurotoxicity:	
  an	
  ex	
  vivo	
  nuclear	
  magnetic	
  resonance	
  study	
  
           using	
  [1-­-13C]glucose.	
  Neurotoxicology.	
  25(4):	
  p.	
  573-­-87.	
  

     43. Aoki,	
   I.,	
   et	
   al.(2002)	
   Dynamic	
   activity-­-induced	
   manganese-­-dependent	
   contrast	
   magnetic	
  
           resonance	
  imaging	
  (DAIM	
  MRI).	
  Magn	
  Reson	
  Med.	
  48(6):	
  p.	
  927-­-33.	
  

     44. Aoki,	
   I.,	
   et	
   al.(2004)	
   In	
   vivo	
   detection	
   of	
   neuroarchitecture	
   in	
   the	
   rodent	
   brain	
   using	
  
           manganese-­-enhanced	
  MRI.	
  Neuroimage.	
  22(3):	
  p.	
  1046-­-59.	
  

     45. Chaudhri,	
   O.B.,	
   et	
   al.(2006)	
   Differential	
   hypothalamic	
   neuronal	
   activation	
   following	
  
           peripheral	
   injection	
   of	
   GLP-­-1	
   and	
   oxyntomodulin	
   in	
   mice	
   detected	
   by	
   manganese-­-	
  
           enhanced	
   magnetic	
   resonance	
   imaging.	
   Biochem	
   Biophys	
   Res	
   Commun.	
   350(2):	
   p.	
   298-­-
           306.	
  

     46. Kuo,	
   Y.T.,	
   et	
   al.(2006)	
   Manganese-­-enhanced	
   magnetic	
   resonance	
   imaging	
   (MEMRI)	
  
           without	
  compromise	
  of	
  the	
  blood-­-brain	
  barrier	
  detects	
  hypothalamic	
  neuronal	
  activity	
  in	
  
           vivo.	
  NMR	
  Biomed.	
  19(8):	
  p.	
  1028-­-34.	
  

     47. Hankir,	
   M.K.,	
   et	
   al.(2011)	
   Peptide	
   YY	
   3-­-36	
   and	
   pancreatic	
   polypeptide	
   differentially	
  
           regulate	
   hypothalamic	
   neuronal	
   activity	
   in	
   mice	
   in	
   vivo	
   as	
   measured	
   by	
   manganese-­-	
  
           enhanced	
  magnetic	
  resonance	
  imaging.	
  J	
  Neuroendocrinol.	
  23(4):	
  p.	
  371-­-80.	
  

     48. Parkinson,	
  J.R.,	
  O.B.	
  Chaudhri,	
  and	
  J.D.	
  Bell(2009)	
  Imaging	
  appetite-­-regulating	
  pathways	
  in	
  
           the	
   central	
   nervous	
   system	
   using	
   manganese-­-enhanced	
   magnetic	
   resonance	
   imaging.	
  
           Neuroendocrinology.	
  89(2):	
  p.	
  121-­-30.	
  

     49. Parkinson,	
   J.R.,	
   et	
   al.(2009)	
   Differential	
   patterns	
   of	
   neuronal	
   activation	
   in	
   the	
   brainstem	
  
           and	
   hypothalamus	
   following	
   peripheral	
   injection	
   of	
   GLP-­-1,	
   oxyntomodulin	
   and	
   lithium	
  
           chloride	
  in	
  mice	
  detected	
  by	
  manganese-­-enhanced	
  magnetic	
  resonance	
  imaging	
  (MEMRI).	
  
           Neuroimage.	
  44(3):	
  p.	
  1022-­-31.	
  

     50. Delgado,	
   T.C.,	
   et	
   al.(2011)	
   Neuroglial	
   metabolic	
   compartmentation	
   underlying	
   leptin	
  
           deficiency	
   in	
   the	
   obese	
   ob/ob	
   mice	
   as	
   detected	
   by	
   magnetic	
   resonance	
   imaging	
   and	
  
           spectroscopy	
  methods.	
  J	
  Cereb	
  Blood	
  Flow	
  Metab.	
  31(12):	
  p.	
  2257-­-66.	
  

     51. Anastasovska,	
   J.,	
   et	
   al.(2012)	
   Fermentable	
   carbohydrate	
   alters	
   hypothalamic	
   neuronal	
  
           activity	
  and	
  protects	
  against	
  the	
  obesogenic	
  environment.	
  Obesity	
  (Silver	
  Spring).	
  20(5):	
  p.	
  
           1016-­-23.	
  

     52. Just,	
   N.	
   and	
   R.	
   Gruetter(2011)	
   Detection	
   of	
   neuronal	
   activity	
   and	
   metabolism	
   in	
   a	
  
           model	
   of	
   dehydration-­-induced	
   anorexia	
   in	
   rats	
   at	
   14.1	
   T	
   using	
   manganese-­-enhanced	
  
           MRI	
  and	
  1H	
  MRS.	
  NMR	
  Biomed.	
  24(10):	
  p.	
  1326-­-36.	
  

     53. Gutman,	
   D.A.,	
   et	
   al.(2013)	
   Mapping	
   of	
   the	
   mouse	
   olfactory	
   system	
   with	
   manganese-­-	
  
           enhanced	
   magnetic	
   resonance	
   imaging	
   and	
   diffusion	
   tensor	
   imaging.	
  Brain	
   Struct	
   Funct.	
  
           218(2):	
  p.	
  527-­-37.	
  

108	
  	
  

	
  
   108   109   110   111   112   113   114   115   116   117   118