Page 113 - 79_01
P. 113
B.
Lizarbe
y
S.
Cerdán
36. Andrew,
R.D.,
et
al.(1981)
Dye
transfer
through
gap
junctions
between
neuroendocrine
cells
of
rat
hypothalamus.
Science.
211(4487):
p.
1187--9.
37. Jaffe,
L.F.(2008)
Calcium
waves.
Philos
Trans
R
Soc
Lond
B
Biol
Sci.
363(1495):
p.
1311--6.
38. Jaffe,
L.F.(2010)
Fast
calcium
waves.
Cell
Calcium.
48(2--3):
p.
102--13.
39. Lee,
J.H.,
et
al.(2005)
Manganese--enhanced
magnetic
resonance
imaging
of
mouse
brain
after
systemic
administration
of
MnCl2:
dose--dependent
and
temporal
evolution
of
T1
contrast.
Magn
Reson
Med.
53(3):
p.
640--8.
40. Just,
N.,
et
al.(2011)
Effect
of
manganese
chloride
on
the
neurochemical
profile
of
the
rat
hypothalamus.
J
Cereb
Blood
Flow
Metab.
31(12):
p.
2324--33.
41. Zwingmann,
C.,
D.
Leibfritz,
and
A.S.
Hazell(2003)
Energy
metabolism
in
astrocytes
and
neurons
treated
with
manganese:
relation
among
cell--specific
energy
failure,
glucose
metabolism,
and
intercellular
trafficking
using
multinuclear
NMR--spectroscopic
analysis.
J
Cereb
Blood
Flow
Metab.
23(6):
p.
756--71.
42. Zwingmann,
C.,
D.
Leibfritz,
and
A.S.
Hazell(2004)
Brain
energy
metabolism
in
a
sub--
acute
rat
model
of
manganese
neurotoxicity:
an
ex
vivo
nuclear
magnetic
resonance
study
using
[1--13C]glucose.
Neurotoxicology.
25(4):
p.
573--87.
43. Aoki,
I.,
et
al.(2002)
Dynamic
activity--induced
manganese--dependent
contrast
magnetic
resonance
imaging
(DAIM
MRI).
Magn
Reson
Med.
48(6):
p.
927--33.
44. Aoki,
I.,
et
al.(2004)
In
vivo
detection
of
neuroarchitecture
in
the
rodent
brain
using
manganese--enhanced
MRI.
Neuroimage.
22(3):
p.
1046--59.
45. Chaudhri,
O.B.,
et
al.(2006)
Differential
hypothalamic
neuronal
activation
following
peripheral
injection
of
GLP--1
and
oxyntomodulin
in
mice
detected
by
manganese--
enhanced
magnetic
resonance
imaging.
Biochem
Biophys
Res
Commun.
350(2):
p.
298--
306.
46. Kuo,
Y.T.,
et
al.(2006)
Manganese--enhanced
magnetic
resonance
imaging
(MEMRI)
without
compromise
of
the
blood--brain
barrier
detects
hypothalamic
neuronal
activity
in
vivo.
NMR
Biomed.
19(8):
p.
1028--34.
47. Hankir,
M.K.,
et
al.(2011)
Peptide
YY
3--36
and
pancreatic
polypeptide
differentially
regulate
hypothalamic
neuronal
activity
in
mice
in
vivo
as
measured
by
manganese--
enhanced
magnetic
resonance
imaging.
J
Neuroendocrinol.
23(4):
p.
371--80.
48. Parkinson,
J.R.,
O.B.
Chaudhri,
and
J.D.
Bell(2009)
Imaging
appetite--regulating
pathways
in
the
central
nervous
system
using
manganese--enhanced
magnetic
resonance
imaging.
Neuroendocrinology.
89(2):
p.
121--30.
49. Parkinson,
J.R.,
et
al.(2009)
Differential
patterns
of
neuronal
activation
in
the
brainstem
and
hypothalamus
following
peripheral
injection
of
GLP--1,
oxyntomodulin
and
lithium
chloride
in
mice
detected
by
manganese--enhanced
magnetic
resonance
imaging
(MEMRI).
Neuroimage.
44(3):
p.
1022--31.
50. Delgado,
T.C.,
et
al.(2011)
Neuroglial
metabolic
compartmentation
underlying
leptin
deficiency
in
the
obese
ob/ob
mice
as
detected
by
magnetic
resonance
imaging
and
spectroscopy
methods.
J
Cereb
Blood
Flow
Metab.
31(12):
p.
2257--66.
51. Anastasovska,
J.,
et
al.(2012)
Fermentable
carbohydrate
alters
hypothalamic
neuronal
activity
and
protects
against
the
obesogenic
environment.
Obesity
(Silver
Spring).
20(5):
p.
1016--23.
52. Just,
N.
and
R.
Gruetter(2011)
Detection
of
neuronal
activity
and
metabolism
in
a
model
of
dehydration--induced
anorexia
in
rats
at
14.1
T
using
manganese--enhanced
MRI
and
1H
MRS.
NMR
Biomed.
24(10):
p.
1326--36.
53. Gutman,
D.A.,
et
al.(2013)
Mapping
of
the
mouse
olfactory
system
with
manganese--
enhanced
magnetic
resonance
imaging
and
diffusion
tensor
imaging.
Brain
Struct
Funct.
218(2):
p.
527--37.
108