Page 71 - 78_02
P. 71
DANIEL
ARCOS
8. Mahony,
O.,
&
Jones,
J.
R.
(2008).
Porous
bioactive
nanostructured
scaffolds
for
bone
regeneration:
a
sol--gel
solution.
Nanomedicine,
3,
233--245.
9. Coradin,
T.,
Boissière,
M.,
&
Livage,
J.
(2006).
Sol--gel
Chemistry
in
Medicinal
Science
Curr.
Med.
Chem.,
13,
99--108.
10. Vallet--Regí,
M.
(2001).
Ceramics
for
medical
applications.
J.
Chem.
Soc.
Dalton
Trans.
97--108.
11. Vallet--Regí,
M.,
Ragel,
C.
V.,
&
Salinas,
A.
J.
(2003).
Glasses
with
medical
applications.
Eur.
J.
Inorg.
Chem.
1029--1042.
12. Vallet--Regí,
M.,
Rámila,
A.,
del
Real,
R.
P.,
&
Pérez--Pariente,
J.
(2001).
A
new
property
of
MCM--
41:
Drug
delivery
system.
Chem.
Mater.,
13,
308--311.
13. Kresge,
C.
T.,
Leonowicz,
M.
E.,
Roth,
W.
J.,
Vartuli,
J.
C.,
&
Beck,
J.
S.
(1992).
Ordered
mesoporous
molecular
sieves
synthesized
by
a
liquid--crystal
template
mechanism.
Nature,
359,
710--712.
14. Vallet--Regí,
M.,
Balas,
F.,
&
Arcos,
D.
(2007).
Mesoporous
materials
for
drug
delivery.
Angew
Chem
Int
Ed,
46(40),
7548–7558.
15. Tan,
K.,
Cheang,
P.,
Ho,
I.
A.
W.,
Lam,
P.
Y.
P.,
&
Hui,
K.
M.
(2007).
Nanosized
bioceramic
particles
could
function
as
efficient
gene
delivery
vehicles
with
target
specificity
for
the
spleen.
Gene
Therapy,
14,
828--835.
16. Slowing,
I.
I.,
Trewyn,
B.
G.,
&
Lin,
V.
S.--Y.
(2006).
Effect
of
surface
functionalization
of
MCM--
41--type
mesoporous
silica
nanoparticles
on
the
endocytosis
by
human
cancer
cells.
J.
Am.
Chem.
Soc.,
128,
14792--14793.
17. Slowing,
I.
I.,
Trewyn,
B.
G.,
&
Lin,
V.
S.--Y.
(2007).
Mesoporous
silica
nanoparticles
for
intracellular
delivery
of
membrane--impermeable
proteins.
J.
Am.
Chem.
Soc.,
129,
8845--8849.
18. Hernandez,
R.,
Tseng,
H.
R.,
Wong,
J.
W.,
Stoddart,
J.
F.,
&
Zink,
J.
I.
(2004).
An
operational
supramolecular
nanovalve.
J.
Am.
Chem.
Soc.,
126,
3370--3371.
19. Ferris,
D.
P.,
Zhao,
Y.
L.,
Khashab,
N.
M.,
Khatib,
H.
A.,
Stoddart,
J.
F.,
&
Zink,
J.
I.
(2009).
Light--
operated
mechanized
nanoparticles.
J.
Am.
Chem.
Soc.,
131,
1686--1688.
20. Lai,
C.
Y.,
Trewyn,
B.
G.,
Jeftinija,
D.
M.,
Jeftinija,
K.,
Xu,
S.,
Jeftinija,
S.,
&
Lin,
V.
S.--Y.
(2003).
A
mesoporous
silica
nanosphere--based
carrier
system
with
chemically
removable
CdS
nanoparticle
caps
for
stimuli--responsive
controlled
release
of
neurotransmitters
and
drug
molecules
J.
Am.
Chem.
Soc.,
125,
4451--4459.
21. Ruiz--Hernández,
E.,
Baeza,
A.,
&
Vallet--Regí,
M.
(2011).
Smart
drug
delivery
through
DNA/magnetic
nanoparticle
gates.
ACSNano,
5,
1259--1266.
22. Horcajada,
P.,
Rámila,
A.,
Boulahya,
K.,
González--Calbet,
J.,
&
Vallet--Regí,
M.
(2004).
Bioactivity
in
ordered
mesoporous
silica
materials.
Solid
State
Sci.,
6,
1295--1300.
23. Izquierdo--Barba,
I.,
Ruiz--González,
L.,
Doadrio,
J.
C.,
González--Calbet,
J.
M.,
&
Vallet--Regí,
M.
(2005). Tissue
regeneration:
a
new
property
of
mesoporous
materials.
Solid
State
Sci.,
7,
983--989.
24. Li,
P.,
Ohtsuki,
C.,
Kokubo,
T.,
Nankanishi,
K.,
Soga,
N.,
Nakamura,
T.,
&
Yamamuro,
T.
(1992).
Apatite
formation
induced
by
silica
gel
in
a
simulated
body
fluid.
J.
Am.
Ceram.
Soc.,
75,
2091--
2097.
25. Li,
P.,
Ohtsuki,
C.,
Kokubo,
T.,
Nankanishi,
K.,
Soga,
N.,
Nakamura,
T.,
&
Yamamuro,
T.
(1993).
Effects
of
ions
in
aqueous
media
on
hydroxyapatite
induction
by
silica
gel
and
its
relevance
to
bioactivity
of
bioactive
glass
and
glass--ceramics.
J.
Appl.
Biomat.,
4,
221--229.
26. Pereira,
M.
M.,
Clark,
A
.E.,
&
Hench.
L.
L.
(1995).
Effect
of
texture
on
the
rate
of
hydroxyapatite
formation
on
silica
gel
surface.
J.
Am.
Ceram.
Soc.,
78,
2463--2468.
27. Yan,
X.
X.,
Yu,
C.
Z.
,
Zhou,
X.
F.,
Tang,
J.
W.,
&
Zhao,
D.
Y.
(2004).
Highly
ordered
mesoporous
bioactive
glasses
with
superior
in
vitro
bone
forming
bioactivities.
Angew.
Chem.
Int.
Ed.,
43,
5980--5984.
208