Page 134 - 73_04
P. 134

ESTHER VICENTE Y COLS.  ANAL. REAL ACAD. NAC. FARM.

(24)  ORTEGA, M. A.; MONTOYA, M. E.; JASO, A.; ZARRANZ, B.; TIRAPU, I.; ALDANA, I. Y
      MONGE, A. (2001) Antimycobacterial activity of new quinoxaline-2-carbonitri-
(25)  le and quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives. Pharmazie. 56:
      205-207.
(26)  ORTEGA, M. A.; SAINZ, Y.; MONTOYA, M. E.; JASO, A.; ZARRANZ, B.; ALDANA, I. Y
(27)  MONGE, A. (2002) Anti-Mycobacterium tuberculosis agents derived from qui-
(28)  noxaline-2-carbonitrile and quinoxaline-2-carbonitrile 1,4-di-N-oxide. Arz-
(29)  neim.-Forsch. 52: 113-119.
      ZARRANZ, B.; JASO, A.; ALDANA, I. Y MONGE, A. (2003) Synthesis and antimyco-
(30)  bacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivati-
(31)  ves. Bioorg. Med. Chem. 11: 2149-2156.
(32)  JASO, A.; ZARRANZ, B.; ALDANA, I. Y MONGE, A. (2003) Synthesis of new 2-acetyl
(33)  and 2-benzoyl quinoxaline 1,4-di-N-oxide derivatives as anti-Mycobacterium
      tuberculosis agents. Eur. J. Med. Chem. 38: 791-800.
(34)  JASO, A.; ZARRANZ, B.; ALDANA, I. Y MONGE, A. (2005) Synthesis of new quinoxa-
(35)  line-2-carboxylate 1,4-dioxide derivatives as anti-Mycobacterium tuberculosis
(36)  agents. J. Med. Chem. 48: 2019-2025.
(37)  GUILLON, J.; REYNOLDS, R. C.; LEGER, J. M.; GUIE, M. A.; MASSIP, S.; DALLEMAGNE,
      P. Y JARRY, C. (2004) Synthesis and preliminary in vitro evaluation of anti-
      mycobacterial activity of new pyrrolo[1,2-a]quinoxaline-carboxylic acid
      hydrazide derivatives. J. Enzyme Inhib. Med. Chem. 19: 489-495.
      KUNES, J.; SPULAK, M.; WAISSER, K.; SLOSAREK, M. Y JANOTA, J. (2000) Quinoxa-
      line derivatives as potential antituberculotic agents. Pharmazie. 55: 858-859.
      SEITZ, L. E.; SULING, W. J. Y REYNOLDS, R. C. (2002) Synthesis and antimyco-
      bacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem. 45:
      5604-5606.
      CARTA, A.; PAGLIETTI, G.; RAHBAR NIKOOKAR, M. E.; SANNA, P.; SECHI, L. Y ZANETTI,
      S. (2002) Novel substituted quinoxaline 1,4-dioxides with in vitro antimyco-
      bacterial and anticandida activity. Eur. J. Med. Chem. 37: 355-366.
      GOLDMAN, R. C.; LAUGHON, B. E.; REYNOLDS, R. C.; SECRIST, J. A.; MADDRY, J. A.;
      GUIE, M. A.; POFFENBERGER, A. C.; KWONG, C. A. Y ANANTHAN, S. (2007) Progra-
      ms to Facilitate Tuberculosis Drug Discovery: The Tuberculosis Antimicro-
      bial Acquisition and Coordinating Facility. Infectious Disorders - Drug Targets
      (Formerly Current Drug Targets – Infectious). 7: 92-104.
      FISHER, G. H.; MORENO, H. R.; OATIS, J. E. Y SCHULTZ, H. P. (1975) Quinoxaline
      Studies. 23. Potential Antimalarials - Substituted 5,8-dimethoxyquinoxalines.
      J. Med. Chem. 18: 746-752.
      MORENO, H. R. Y SCHULTZ, H. P. (1970) Quinoxaline Studies. 15. Potential
      Antimalarials. Some (RS)-Alpha(Dialkylaminomethyl)-2-Quinoxalinemetha-
      nols. J. Med. Chem. 13: 119-121.
      MORENO, H. R. Y SCHULTZ, H. P. (1970) Quinoxaline Studies. 17. Potential
      Antimalarials. 17. Some (RS)-Alpha-(Dialkylaminomethyl)-6-Chloro-2-Qui-
      noxalinemethanols. J. Med. Chem. 13: 1005-1008.
      MORENO, H. R.; SCHULTZ, H. P. Y OATIS, J. E. (1972) Quinoxaline Studies. 20.
      Potential Antimalarials - Synthesis of Anti-N,N-Dialkylaminomethyl and Syn-
      N,N-Dialkylaminomethyl 2-Quinoxalinyl Ketoximes. J. Med. Chem. 15: 433-
      434.

944
   129   130   131   132   133   134   135   136   137   138   139