Page 20 - 75_01
P. 20

OTERO, Y. F. & DE LAS HERAS, B.  AN. R. ACAD. NAC. FARM.

 6. Severson, D.L. (2004) Diabetic cardiomyopathy: recent evidence from mouse mod-
        els of type 1 and type 2 diabetes. Can. J. Physio.l Pharmacol. 82 (10): 813-823.

 7. Randle, P.J., Garland, P. B., Hales, C.N. & Newsholme, E. A. (1963) The glucose
        fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of
        diabetes mellitus. Lancet. 1: 785- 789.

 8. Taegtmeyer, H., Hems, R. & Krebs, H. A. (1980) Utilization of energy-providing
        substrates in the isolated working rat heart. Biochem. J. 186 (3): 701-711.

 9. Saha, A. K., Vavvas, D., Kurowski, T. G., Apazidis, A., Witters, L. A., Shafrir, E.
        & Ruderman, N. B. (1997) Malonyl-CoA regulation in skeletal muscle: its link
        to cell citrate and the glucose-fatty acid cycle. Am. J. Physiol. 272: E641-648.

10. DeFronzo, R.A. (1988) The triumvirate: beta-cell, muscle, liver. A collusion re-
        sponsible for NIDDM. Diabetes. 37 (6): 667-687.

11. Belke, D. D., Betuing, S., Tuttle, M. J., Graveleau, C., Young, M. E., Pham, M.,
        Zhang, D., Cooksey, R. C., McClain, D. A., Litwin, S. E., Taegtmeyer, H.,
        Severson, D., Kahn, C.R. & Abel, E. D. (2002) Insulin signaling coordinately
        regulates cardiac size, metabolism, and contractile protein isoform expression.
        J. Clin. Invest. 109 (5): 629-639.

12. Abel, E. D. (2004) Glucose transport in the heart. Front. Biosci. 9: 201-215.
13. Bradford, M. M. (1976) A rapid and sensitive method for the quantification of

        microgram quantities of protein utilizing the principle of protein-dye binding.
        Anal. Biochem. 72: 248-254.
14. Hocquette, J. F., Sauerwein, H., Higashiyama, Y., Picard, B. & Abe, H. (2006)
        Prenatal developmental changes in glucose transporters, intermediary metabo-
        lism and hormonal receptors related to the IGF/insulin-glucose axis in the heart
        and adipose tissue of bovines. Reprod. Nutr. Dev. 46 (3): 257-272.
15. Ungar, I., Gilbert, M., Siegel, A., Blain, J. M. & Bing, R. J. (1955) Studies on
        myocardial metabolism. IV. Myocardial metabolism in diabetes. Am. J. Med. 18
        (3): 385- 396.
16. Kim, J. Y., Nolte, L. A., Hansen, P. A., Han, D. H., Ferguson, K., Thompson, P.
        A. & Holloszy, J.O. (2000) High-fat diet-induced muscle insulin resistance: re-
        lationship to visceral fat mass. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279
        (6): R2057-2065.
17. Storlien, L. H., James, D. E., Burleigh, K. M., Chisholm, D. J. & Kraegen, E. W.
        (1986) Fat feeding causes widespread in vivo insulin resistance, decreased en-
        ergy expenditure, and obesity in rats. Am. J. Physiol. 251 (5 Pt 1): E576-583.
18. Itani, S. I., Zhou, Q., Pories, W. J., MacDonald, K. G. & Dohm, G. L. (2000)
        Involvement of protein kinase C in human skeletal muscle insulin resistance
        and obesity. Diabetes. 49 (8): 1353-1358.
19. Laybutt, D. R., Schmitz-Peiffer, C., Saha, A. K., Ruderman, N. B., Biden, T. J.
        & Kraegen, E. W. (1999) Muscle lipid accumulation and protein kinase C acti-
        vation in the insulin-resistant chronically glucose-infused rat. Am. J. Physiol.
        277 (6 Pt 1): E1070- 1076.
20. Engelbrecht, A. M., Engelbrecht, P., Genade, S., Niesler, C., Page, C., Smuts, M.
        & Lochner, A. (2005) Long-chain polyunsaturated fatty acids protect the heart
        against ischemia/reperfusion-induced injury via a MAPK dependent pathway. J.
        Mol. Cell. Cardiol. 39 (6): 940-54.

22
   15   16   17   18   19   20   21   22   23   24   25