Page 89 - 73_04
P. 89
VOL. 73 (4), 873-900, 2007 INGENIERÍA DE TEJIDOS, APLICACIONES EN...
(20) COOMBES, A.G.; RIZZI, S.C.; WILLIAMSON, M.; BARRALET, J.E.; DOWNES, S. Y WA-
(21) LLACE, W.A. (2004) Precipitation casting of polycaprolactone for applications
(22) in tissue engineering and drug delivery. Biomaterials. 25: 315-325.
(23) LI, W.J.; TULI, R.; OKAFOR, C.; DERFOUL, A.; DANIELSON, K.G.; HALL, D.J. Y TUAN,
R.S. (2005) A three-dimensional nanofibrous scaffold for cartilage tissue en-
(24) gineering using human mesenchymal stem cells. Biomaterials. 26: 599-609.
(25) KHOR, H.L.; NG, K.W.; HTAY, A.S.; SCHANTZ, J.-T.; TEOH, S.H. Y HUTMACHER,
(26) D.W. (2003) Preliminary study of a polycaprolactone membrane utilized as
(27) epidermal substrate. J. Mater. Sci. Mater. Med. 14: 113-120.
SERRANO, M.C.; PORTOLÉS, M.T.; VALLET-REGÍ, M.; IZQUIERDO-BARBA, I.; GALLETTI,
(28) L.; COMAS, J.V. Y PAGANI, R. (2005) Vascular endothelial and smooth muscle
(29) cell culture on NaOH-treated poly(å-caprolactone) films as a preliminary
(30) study for vascular graft development by tissue engineering. Macromolecular
(31) Bioscience. 5: 415-423.
WILLIAMS, D.F. (1999) The Williams Dictionary of Biomaterials. Liverpool,
(32) UK: University Press; p.40.
(33) MARQUES, A.P.; REIS, R.L. Y HUNT, J.A. (2002) The biocompatibility of novel
(34) starch-based polymers and composites: In vitro studies. Biomaterials. 23:
1471-1478.
SERRANO, M.C.; PAGANI, R.; VALLET-REGÍ, M.; PEÑA, J.; RÁMILA, A.; IZQUIERDO, I.
Y PORTOLÉS, M.T. (2004) In vitro biocompatibility assessment of poly(e-capro-
lactone) films using L929 mouse fibroblasts. Biomaterials. 25: 5603-5611.
GROTH, T.H.; KLOSZ, K.; CAMPBELL, E.J.; NEW, R.C.; HALL, B. Y GOERING, H.
(1994) Protein adsorption, lymphocyte adhesion and platelet adhesion/acti-
vation on polyurethane ureas is related to hard segment content and compo-
sition. J. Biomater. Sci. Polyme.r Edn. 6: 497-510.
VAN WACHEM, P.B.; BENGELING, T.; FEIJEIN, J.; BANTJES, A.; DETMERS, J.P. Y VAN
AKEN, W.G. (1985) Interaction of cultured human endothelial cells with po-
lymeric surfaces of different wettabilities. Biomaterials. 6: 403-408.
HUBBELL, J.A. (1995) Biomaterials in tissue engineering. Biotechnology. 13:
565-576.
TRIVIÑO, G.; SERRANO, M.C.; PAGANI, R. Y PORTOLÉS, M.T. (2005) A customizable
instrument for measuring the mechanical properties of thin biomedical mem-
branes. Macromol. Mater. Eng. 290: 953-960.
JARRELL, B.E.; WILLIAMS, S.K.; STOKES, G.; HUBBARD, F.A.; CARABASI, R.A.; KOOL-
PE, E.; GREENER, D.; PRATT, K.; MORITZ, M.J. Y RADOMSKI, J. (1986) Use of
freshly isolated capillary endothelial cells for the immediate establishment of
a monolayer on a vascular graft at surgery. Surgery. 100: 392-399.
DEUTSCH, M.; MEINHART, J.; FISCHLEIN, T.; PREISS, P. Y ZILLA, P. (1999) Clinical
autologous in vivo endothelialization of infrainguinal ePTFE grafts in 100
patients: a 9-year experience. Surgery. 126: 847-855.
FILLINGER, M.F.; SAMPSON, L.N.; CRONENWETT, J.L.; POWELL, R.J. Y WAGNER, R.J.
(1997) Coculture of endothelial cells and smooth muscle cells in bilayer and
conditioned media models. J., Surg. Res. 67: 169-178.
LANDER, H.M. (1997) An essential role for free radicals and derived species in
signal transduction. FASEB J. 11: 118-124.
899