Page 88 - 73_04
P. 88

RAFFAELLA PAGANI Y COLS.  ANAL. REAL ACAD. NAC. FARM.

 (3)  NIKLASON, L.E. Y LANGER R.S. (1997) Advances in tissue engineering of blood
 (4)  vessels and other tissues. Transplant Immunology 5: 303-306.
      KADNER A.; HOERSTRUP S.P.; TRACY J.; BREYMANN C.; MAURUS C.F.; MELNITCHOUK
 (5)  S.; KADNER G.; ZUND G. Y TURINA M. (2002) Human umbilical cord cells: a new
 (6)  cell source for cardiovascular tissue engineering. Ann. Thorac. Surg. 74:
 (7)  S1422-1428.
      LANGER, R. Y VACANTI, J.P. (1993) Tissue Engineering. Science 260: 920-926.
 (8)  ABRAHAM, G.A.; GONZALEZ, M.F. Y CUADRADO, T.R. (1998) La ciencia y la inge-
      niería de los biomateriales, un desafío interdisciplinario. Ciencia Hoy 9 (49).
 (9)  HEYLIGERS, J.M.M.; ARTS, C.H.P.; VERHAGEN, H.J.M.; DE GROOT, P.G. Y MOLL F.L.
      (2005) Improving small-diameter vascular grafts: From the application of an
(10)  endotelial cell lining to the construction of a tissue-engineered blood vessel.
(11)  Ann. Vasc. Surg. 19: 1-9.
(12)  VOORHEES, A.B.; JARETZKI, A. Y BLAKEMORE, A.H. (1952) The use of tubes cons-
(13)  tructed from vinyon “N” cloth in bridging arterial defects. Ann. Surg. 135:
      332-336.
(14)  VARA, D.S.; SALACINSKI, H.J.; KANNAN, R.Y.; BORDENAVE, L.; HAMILTON, G. Y SEI-
(15)  FALIAN, A.M. (2005) Cardiovascular tissue engineering: state of the art. Pathol.
      Biol. (Paris) 53: 599-612.
(16)  WEINBERG, C. Y BELL, A. (1986) A blood vessel model constructed from colla-
      gen and cultured vascular cells. Science. 231: 397-400.
(17)  L´HEREUX, N.; PAQUET, S.; LABBE, R.; GERMAIN, L. Y AUGER, F.A. (1998) A com-
      pletely biological tissue-engineered human blood vessel. FASEB J. 12: 47-56.
(18)  NIKLASON, L.E.; GAO, J.; ABBOTT, W.M.; HIRSCHI, K.K.; HOUSER, S.; MARIN, R. Y
      LANGER, R. (1999) Functional arteries grown in vitro. Science. 284: 489-493.
(19)  NASSERI, B.A.; OGAWA, K. Y VACANTI, J.P. (2001) Tissue engineering: An evol-
      ving 21st-century science to provide biologic replacement for reconstruction
      and transplantation. Surgery. 130: 781-784.
      DUMITRIU, S. (2001) Polymeric Biomaterials. 2nd Ed. Rev. Marcel Dekker Inc:
      New York. p95-7, 107-9, 402-3.
      LOWRY, K.J.; HAMSON, K.R.; BEAR, L.; PENG, Y.B.; CALALUCE, R.; EVANS, M.L.;
      ANGLEN, J.O. Y ALLEN, W.C. (1997) Polycaprolactone/glass bioabsorbable im-
      plant in a rabbit humerus fracture model. J. Biomed. Mater. Res. 36: 536-541.
      KIM, H.W.; KNOWLES, J.C. Y KIM, H.E. (2004) Development of hydroxyapatite
      bone scaffold for controlled drug release via poly(e-caprolactone) and hydrox-
      yapatite hybrid coatings. J. Biomed. Mate.r Res. 70B: 240-249.
      IMMIRZI, B.; MALINCONICO, M.; ORSELLO, G.; PORTOFINO, S. Y VOLPE, M.G. (1999)
      Blends of biodegradable polyesters by reactive blending: preparation, charac-
      terization and properties. J. Mat. Sci. 34: 1625-1640.
      KWON, I.K.; KIDOAKI, S. Y MATSUDA, T. (2005) Electrospun nano- to microfiber
      fabrics made of biodegradable copolyesters: structural characteristics, me-
      chanical properties and cell adhesion potential. Biomaterials. 26: 3929-3939.
      Khor, H.L.; Ng, K.W.; Schantz, J.T.; Phan, T.-T.; Lim, T.C.; Teoh, S.H.
      y Hutmacher, D.W. (2002) Poly(e-caprolactone) films as a potential subs-
      trate for tissue engineering an epidermal equivalent. Mater. Sci. Eng. C. 20:
      71-75.

898
   83   84   85   86   87   88   89   90   91   92   93