Page 93 - 86_04
P. 93
ANALES cleases, base editors, transposases and prime editors. Nat Biotechnol.
RANF 2020; 38:824-44.
38. Montoliu L. La modificación genética dirigida en ratones es premiada
www.analesranf.com con el Nobel de Fisiología o Medicina de 2007. Anales de la Real Aca-
demia Nacional de Farmacia 2008; 4:81-99.
system. Microbiology 2009; 155:733-40. 39. Seruggia D, Fernández A, Cantero M, Pelczar P, Montoliu L. Functional
22. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly in- validation of mouse tyrosinase non-coding regulatory DNA elements by
CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Res. 2015;
terspaced short palindrome repeats (CRISPRs) have spacers of extrach- 43:4855-67.
romosomal origin. Microbiology. 2005; 151:2551-61. 40. Seruggia D, Fernández A, Cantero M, Fernández-Miñán A, Gomez-
23. Oliveros JC, Franch M, Tabas-Madrid D, San-León D, Montoliu L, Cubas Skarmeta JL, Pelczar P, Montoliu L. Boundary sequences flanking the
P, Pazos F. Breaking-Cas-interactive design of guide RNAs for CRISPR- mouse tyrosinase locus ensure faithful pattern of gene expression. Sci
Cas experiments for ENSEMBL genomes. Nucleic Acids Res. 2016; Rep. 2020; 10:15494.
44:W267-71. 41. Seruggia D, Josa S, Fernández A, Montoliu L. The structure and function
24. Torres-Perez R, Garcia-Martin JA, Montoliu L, Oliveros JC, Pazos F. We- of the mouse tyrosinase locus. Pigment Cell Melanoma Res. 2020 Oct
Review: CRISPR Tools-Live Repository of Computational Tools for Assis- 23. doi: 10.1111/pcmr.12942.
ting CRISPR/Cas Experiments. Bioengineering (Basel) 2019; 6:63. 42. Lau MT, Manion J, Littleboy JB, Oyston L, Khuong TM, Wang QP, Nguyen
25. Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal DT, Hesselson D, Seymour JE, Neely GG. Molecular dissection of box
gene transfer in staphylococci by targeting DNA. Science 2008; jellyfish venom cytotoxicity highlights an effective venom antidote. Nat
322:1843-5. Commun. 2019; 10:1655.
26. Wiedenheft B, Zhou K, Jinek M, Coyle SM, Ma W, Doudna JA. Structural 43. Burkard C, Opriessnig T, Mileham AJ, Stadejek T, Ait-Ali T, Lillico SG,
basis for DNase activity of a conserved protein implicated in CRISPR- Whitelaw CBA, Archibald AL. Pigs Lacking the Scavenger Receptor
mediated genome defense. Structure 2009; 17:904-12. Cysteine-Rich Domain 5 of CD163 Are Resistant to Porcine Reproductive
27. Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. Sequence- and Respiratory Syndrome Virus 1 Infection. J Virol. 2018; 92:e00415-
and structure-specific RNA processing by a CRISPR endonuclease. 18.
Science 2010; 329:1355-8. 44. Yang L, Güell M, Niu D, George H, Lesha E, Grishin D, Aach J, Shrock
28. Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval E, Xu W, Poci J, Cortazio R, Wilkinson RA, Fishman JA, Church G. Ge-
P, Fremaux C, Horvath P, Magadán AH, Moineau S. The CRISPR/Cas nome-wide inactivation of porcine endogenous retroviruses (PERVs).
bacterial immune system cleaves bacteriophage and plasmid DNA. Na- Science 2015;3 50:1101-4.
ture 2010; 468:67-71. 45. Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y,
29. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Kan Y, Shrock E, Lesha E, Wang G, Luo Y, Qing Y, Jiao D, Zhao H, Zhou
Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides X, Wang S, Wei H, Güell M, Church GM, Yang L. Inactivation of porcine
immunity in Escherichia coli. Nucleic Acids Res. 2011; 39:9275-82. endogenous retrovirus in pigs using CRISPR-Cas9. Science 2017;
30. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonu- 357:1303-7.
cleoprotein complex mediates specific DNA cleavage for adaptive im- 46. Zsögön A, Cermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi
munity in bacteria. Proc Natl Acad Sci U S A. 2012; 109:E2579-86. L, Voytas DF, Kudla J, Peres LEP. De novo domestication of wild tomato
31. Josa S, Seruggia D, Fernández A, Montoliu L. Concepts and tools for using genome editing. Nat Biotechnol. 2018 Oct 1. doi:
gene editing. Reprod Fertil Dev. 2016; 29:1-7. 10.1038/nbt.4272.
32. Fernández A, Josa S, Montoliu L. A history of genome editing in mam- 47. Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voy-
mals. Mamm. Genome. 2017; 28:237-46. tas DF, Barro F. Low-gluten, nontransgenic wheat engineered with
33. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed CRISPR/Cas9. Plant Biotechnol J. 2018; 16:902-10.
genome editing in human cells. Elife 2013; 2:e00471. 48. Gao H, Gadlage MJ, Lafitte HR, Lenderts B, Yang M, Schroder M, Farrell
34. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jae- J, Snopek K, Peterson D, Feigenbutz L, Jones S, St Clair G, Rahe M,
nisch R. One-step generation of mice carrying mutations in multiple Sanyour-Doyel N, Peng C, Wang L, Young JK, Beatty M, Dahlke B, Ha-
genes by CRISPR/Cas-mediated genome engineering. Cell 2013; zebroek J, Greene TW, Cigan AM, Chilcoat ND, Meeley RB. Superior field
153:910-8. performance of waxy corn engineered using CRISPR-Cas9. Nat Biotech-
35. Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, Hsu nol. 2020; 38:579-81.
F, Radey MC, Peterson SB, Mootha VK, Mougous JD, Liu DR. A bacterial
cytidine deaminase toxin enables CRISPR-free mitochondrial base edi- Sesión científica celebrada el 26 de noviembre de 2020 para conmemorar
ting. Nature 2020; 583:631-37.
36. Doudna JA. The promise and challenge of therapeutic genome editing. 309los premios Nobel en fisiología o medicina y en química 2020
Nature 2020; 578:229-36. Juan Ramón Lacadena, Pablo Gastaminza, Lluis Montoliu
37. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nu- An. Real Acad. Farm. Vol. 86. Nº4 (2020) · pp. 287 - 310