Page 61 - 78_01
P. 61
NURIA
E.
CAMPILO
y
col.
44.
Young,
D.
C.
(2001).
Computational
Chemistry:
A
Practical
Guide
for
Applying
Techniques
to
Real--World
Problems.
3ª
edn.
John
Wiley
&
Sons,
Inc.
45.
Hehre,
W.
S.,
Radom,
L.,
Schleyer,
P.
v.
R.,
&
Pople,
J.
A.
(1986).
Ab
initio
Molecular
Orbital
Theory.
3ª
edn.
John
Wiley
&
Sons,
Inc.
46.
Freund,
R.,
&
Wilson,
W.
(1998).
Regression
Analysis:
Statistical
Modeling
of
a
Response
Variable.
Academic
Press.
47.
Draper,
N.,
&
Smith,
H.
(1998).
Applied
regression
analysis.
Wiley
New
York.
48.
Guido,
R.
V.,
Trossini,
G.
H.,
Castilho,
M.
S.,
Oliva,
G.,
Ferreira,
E.
I.,
&
Andricopulo,
A.
D.
(2008).
Structure--activity
relationships
for
a
class
of
selective
inhibitors
of
the
major
cysteine
protease
from
Trypanosoma
cruzi.
J
Enzyme
Inhib
Med
Chem
23(6),
964--973.
49.
Aguirre,
G.,
Boiani,
M.,
Cabrera,
E.,
Cerecetto,
H.,
Di
Maio,
R.,
Gonzalez,
M.,
Denicola,
A.,
Sant'anna,
C.
M.,
&
Barreiro,
E.
J.
(2006).
New
potent
5--nitrofuryl
derivatives
as
inhibitors
of
Trypanosoma
cruzi
growth.
3D--QSAR
(CoMFA).
studies.
Eur
J
Med
Chem
41(4),
457--466.
50.
Menezes,
I.
R.,
Lopes,
J.
C.,
Montanari,
C.
A.,
Oliva,
G.,
Pavao,
F.,
Castilho,
M.
S.,
Vieira,
P.
C.,
&
Pupo,
M.
T.
(2003).
3D
QSAR
studies
on
binding
affinities
of
coumarin
natural
products
for
glycosomal
GAPDH
of
Trypanosoma
cruzi.
J
Comput
Aided
Mol
Des
17(5--6),
277--290.
51.
Martinez--Merino,
V.,
&
Cerecetto,
H.
(2001).
CoMFA--SIMCA
model
for
antichagasic
nitrofurazone
derivatives.
Bioorg
Med
Chem
9(4),
1025--1030.
52.
Prieto,
J.
J.,
Talevi,
A.,
&
Bruno--Blanch,
L.
E.
(2006).
Application
of
linear
discriminant
analysis
in
the
virtual
screening
of
antichagasic
drugs
through
trypanothione
reductase
inhibition.
Mol
Divers
10(3),
361--375.
53.
Trossini,
G.
H.,
Guido,
R.
V.,
Oliva,
G.,
Ferreira,
E.
I.,
&
Andricopulo,
A.
D.
(2009).
Quantitative
structure--activity
relationships
for
a
series
of
inhibitors
of
cruzain
from
Trypanosoma
cruzi:
Molecular
modeling,
CoMFA
and
CoMSIA
studies.
J
Mol
Graph
Model.
54.
Paulino,
M.,
Alvareda,
E.
M.,
Denis,
P.
A.,
Barreiro,
E.
J.,
Sperandio
da
Silva,
G.
M.,
Dubin,
M.,
Gastellu,
C.,
Aguilera,
S.,
&
Tapia,
O.
(2008).
Studies
of
trypanocidal
(inhibitory).
power
of
naphthoquinones:
evaluation
of
quantum
chemical
molecular
descriptors
for
structure--
activity
relationships.
Eur
J
Med
Chem
43(10),
2238--2246.
55.
Vera--Divaio,
M.
A.,
Freitas,
A.
C.,
Castro,
H.
C.,
de
Albuquerque,
S.,
Cabral,
L.
M.,
Rodrigues,
C.
R.,
Albuquerque,
M.
G.,
Martins,
R.
C.,
Henriques,
M.
G.,
&
Dias,
L.
R.
(2009).
Synthesis,
antichagasic
in
vitro
evaluation,
cytotoxicity
assays,
molecular
modeling
and
SAR/QSAR
studies
of
a
2--phenyl--3--(1--phenyl--1H--pyrazol--4--yl)--acrylic
acid
benzylidene--carbohydrazide
series.
Bioorg
Med
Chem
17(1),
295--302.
56.
Freitas,
R.
F.,
Oprea,
T.
I.,
&
Montanari,
C.
A.
(2008).
2D
QSAR
and
similarity
studies
on
cruzain
inhibitors
aimed
at
improving
selectivity
over
cathepsin
L.
Bioorg
Med
Chem
16(2),
838--853.
57.
Rogers,
D.,
&
Hopfinger,
A.
(1994).
Application
of
Genetic
Function
Approximation
to
Quantitative
Structure--Activity
Relationships
and
Quantitative
Structure--Property
Relationships.
J
Chem
Inf
Model
34(4),
854--866.
58.
Devillers,
J.
(1996a).
Genetic
Algorithms
in
Molecular
Modeling.
Academic
Press.
59.
Livingstone,
D.
J.,
Manallack,
D.
T.,
&
Tetko,
I.
V.
(1997).
Data
modelling
with
neural
networks:
advantages
and
limitations.
J
Comput
Aided
Mol
Des
11(2),
135--142.
60.
Livingstone,
D.
J.,
&
Manallack,
D.
T.
(1993).
Statistics
using
neural
networks:
chance
effects.
J
Med
Chem
36(9),
1295--1297.
61.
Devillers,
J.
(1996b).
Neural
Networks
in
QSAR
and
Drug
Design
(Principles
of
QSAR
and
Drug
Design).
1st
edn.
Academic
Press:
Lyon.
62.
Zupan,
J.,
&
Gasteiger,
J.
(1999).
Neural
networks
in
chemistry
and
drug
desing.
2nd
edn.
WILEY--VCH:
Weinheim.
58