Page 73 - 77_01
P. 73
GUZMÁN--ARANGUREN
Y
COLS
5. CONCLUSION
Our
findings
indicate
that
RNA
interference
targeting
FGFR3
could
be
a
promising
therapeutic
option
for
achondroplasia
in
the
future.
Hopefully,
new
advances
in
delivery
strategies
to
growth
plate
chondrocytes
of
cartilage
will
facilitate
the
development
of
siRNA--based
therapy.
6. ACKNOWLEDGMENTS
This
work
has
been
supported
by
research
grants
from
Fundación
Ramon
Areces
(ACHONDROPLASIA),
Fundación
Magar
and
Fundación
AFAPA.
7. REFERENCES
1. Horton, W. A., Hall, J. G. & Hecht, J. T. (2007) Achondroplasia. Lancet. 370: 162-172.
2. Sahni, M., Raz, R., Coffin, J. D., Levy, D. & Basilico, C. (2001) STAT1 mediates the increased
apoptosis and reduced chondrocyte proliferation in mice overexpressing FGF2. Development.
128: 2119-2129.
3. Raucci, A., Laplantine, E., Mansukhani, A. & Basilico, C. (2004) Activation of the ERK1/2 and
p38 mitogen-activated protein kinase pathways mediates fibroblast growth factor-induced
growth arrest of chondrocytes. J. Biol. Chem. 279: 1747-1756.
4. Murakami, S., Balmes, G., McKinney, S., Zhang, Z., Givol, D. & de Crombrugghe, B. (2004)
Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-
like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev. 18: 290-305.
5. Yasoda, A., Komatsu, Y., Chusho, H., Miyazawa, T., Ozasa, A., Miura, M., Kurihara, T., Rogi,
T., Tanaka, S., Suda, M., Tamura, N., Ogawa, Y. & Nakao, K. (2004) Overexpression of CNP
in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat. Med. 10:
80-86.
6. Aviezer, D., Golembo, M. & Yayon, A. (2003) Fibroblast growth factor receptor-3 as a
therapeutic target for Achondroplasia--genetic short limbed dwarfism. Curr. Drug Targets. 4:
353-365.
7. Rauchenberger, R., Borges, E., Thomassen-Wolf, E., Rom, E., Adar, R., Yaniv, Y., Malka, M.,
Chumakov, I., Kotzer, S., Resnitzky, D., Knappik, A., Reiffert, S., Prassler, J., Jury, K.,
Waldherr, D., Bauer, S., Kretzschmar, T., Yayon, A. & Rothe, C. (2003) Human combinatorial
Fab library yielding specific and functional antibodies against the human fibroblast growth
factor receptor 3. J. Biol. Chem. 278: 38194-38205.
8. Guzman-Aranguez, A., Crooke, A., Yayon, A. & Pintor, J. (2008) Effect of PPADS on
achondroplasic chondrocytes: inhibition of FGF receptor type 3 over-activity. Eur. J.
Pharmacol. 584: 72-77.
9. Behlke, M. A. (2006) Progress towards in vivo use of siRNAs. Mol. Ther. 13: 644-670.
10. Benoist-Lasselin, C., Gibbs, L., Heuertz, S., Odent, T., Munnich, A. & Legeai-Mallet, L. (2007)
Human immortalized chondrocytes carrying heterozygous FGFR3 mutations: an in vitro model
to study chondrodysplasias. FEBS Lett. 581: 2593-2598.
11. Zhu, L., Somlo, G., Zhou, B., Shao, J., Bedell, V., Slovak, M. L., Liu, X., Luo, J. & Yen, Y.
(2005) Fibroblast growth factor receptor 3 inhibition by short hairpin RNAs leads to apoptosis
in multiple myeloma. Mol. Cancer Ther. 4: 787-798.
12. Estes, N. R., Thottassery, J. V. & Kern, F. G. (2006) siRNA mediated knockdown of fibroblast
growth factor receptors 1 or 3 inhibits FGF-induced anchorage-independent clonogenicity but
does not affect MAPK activation. Oncol. Rep. 15: 1407-1416.
13. Sharp, P. A. (2001) RNA interference--2001. Genes Dev. 15: 485-490.
14. Tomlinson, D. C., Hurst, C. D. & Knowles, M. A. (2007) Knockdown by shRNA identifies
S249C mutant FGFR3 as a potential therapeutic target in bladder cancer. Oncogene. 26: 5889-
5899.
15. Shukla, V., Coumoul, X., Wang, R. H., Kim, H. S. & Deng, C. X. (2007) RNA interference and
inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of
craniosynostosis. Nat. Genet. 39: 1145-1150.
10