Page 102 - 80_01
P. 102

José	
  María	
  Rojo,	
  Pilar	
  Portolés	
  

	
  
pathway.	
  Another	
  link	
  is	
  the	
  observation	
  of	
  genomic	
  amplification	
  of	
  genes	
  coding	
  
for	
  p110a	
  (PIK3CA)	
  or	
  its	
  target	
  Akt	
  (AKT)	
  in	
  several	
  types	
  of	
  cancer	
  (reviewed	
  in	
  
(39-­-41)).	
  

        Although	
   all	
   Class	
   I	
   PI3K	
   subunits	
   have	
   oncogenic	
   potential	
   in	
   vitro;	
   the	
  
seminal	
  work	
  by	
  Samuels	
  et	
  al.	
  (42),	
  later	
  confirmed	
  by	
  abundant	
  data,	
  shows	
  that	
  
the	
  p110a	
  catalytic	
  isoform	
  but	
  not	
  other	
  isoforms	
  is	
  mutated	
  with	
  high	
  frequency	
  
in	
   colorectal	
   and	
   other	
   different	
   human	
   cancer	
   cells	
   (39-­-41)).	
   These	
   gain-­-of	
  
function	
   mutations	
   of	
   the	
   PIK3CA	
   gene	
   are	
   located	
   in	
   the	
   ABD	
   and	
   C2	
   domains	
   of	
  
p110a,	
  but	
  particularly	
  in	
  the	
  helical	
  and	
  catalytic	
  domains.	
  The	
  enzymatic	
  activity	
  
is	
   increased	
   by	
   different	
   mechanisms	
   including	
   altered	
   interaction	
   between	
   the	
  
ABD	
   and	
   kinase	
   domains	
   of	
   p110a,	
   between	
   the	
   C2	
   domain	
   and	
   the	
   p85	
   iSH2	
  
domain,	
   between	
   the	
   p85	
   nSH2	
   domain	
   and	
   the	
   helical	
   and	
   kinase	
   domains,	
   or	
  
between	
   the	
   kinase	
   domain	
   and	
   the	
   cell	
   membrane,	
   increasing	
   accessibility	
   to	
  
phospholipid	
  substrates.	
  Mutations	
  in	
  the	
  PIK3R1	
  gene	
  coding	
  the	
  p85a	
  regulatory	
  
subunit	
  have	
  been	
  also	
  described	
  in	
  different	
  cancer	
  cells.	
  They	
  are	
  clustered	
  in	
  the	
  
inter-­-SH2	
  domain	
  of	
  p85	
  that	
  contacts	
  the	
  C2	
  domain	
  of	
  catalytic	
  subunits	
  or	
  in	
  the	
  
nSH2	
   domain	
   that	
   interacts	
   with	
   the	
   helical	
   domain	
   of	
   catalytic	
   subunits;	
   both	
  
might	
   interfere	
   inhibitory	
   interactions	
   between	
   subunits.	
   Interestingly,	
   these	
  
cancer-­-derived	
   gain-­-of-­-function	
   mutations	
   in	
   p85a	
   function	
   through	
   the	
   p110a,	
  
but	
   not	
   other	
   PI3K	
   catalytic	
   subunits	
   (43).	
   Last,	
   the	
   p110a	
   isoform	
   of	
   PI3K	
   in	
  
endothelium	
   plays	
   a	
   role	
   in	
   tumor	
   growth	
   through	
   its	
   contribution	
   to	
   tumor	
  
angiogenesis	
  (44).	
  

        Gain-­-of-­-function	
   E1021K	
   mutations	
   of	
   p110d	
   have	
   been	
   recently	
   reported	
  
in	
   a	
   residue	
   of	
   the	
   catalytic	
   domain	
   similar	
   to	
   those	
   found	
   in	
   p110a,	
   but	
   these	
  
mutations	
   are	
   surprisingly	
   associated	
   with	
   IgM	
   hyperglobulinemia	
   and	
  
immunodeficiency	
   rather	
   than	
   cancer	
   (45).	
   However,	
   p110d	
   can	
   favour	
   tumor	
  
growth	
   by	
   several	
   documented	
   mechanisms.	
   Firstly,	
   in	
   some	
   human	
   ovarian	
   and	
  
colorectal	
  tumors	
  PIK3CD	
  transcripts	
  can	
  be	
  alternatively	
  spliced	
  to	
  generate	
  a	
  37	
  
kDa	
   protein	
   (p37d)	
   that	
   maintains	
   the	
   ABD	
   and	
   RBD	
   domains	
   of	
   p110d.	
   This	
  
protein	
  can	
  enhance	
  the	
  proliferation	
  and	
  invasive	
  properties	
  of	
  transformed	
  cells	
  
(46).	
   In	
   second	
   place,	
   p110d	
   activation	
   can	
   indirectly	
   inhibit	
   the	
   activity	
   of	
   the	
  
PTEN	
   phosphatase	
   by	
   a	
   mechanism	
   involving	
   RhoA	
   (47).	
   Enhanced	
   p110d	
  
expression	
   in	
   solid	
   tumors	
   in	
   fact	
   suppresses	
   PTEN,	
   contributing	
   to	
   cell	
   growth	
  
and	
   –likely-­-	
   to	
   cancer	
   progression	
   of	
   malignancies	
   of	
   hematopoietic	
   and	
   non-­-
hematopoietic	
   origin	
   (48,49).	
   The	
   complexity	
   of	
   PI3Kinase	
   activity	
   regulation	
   is	
  
further	
   highlighted	
   by	
   the	
   ability	
   of	
   p85a	
   to	
   bind	
   to	
   and	
   to	
   activate	
   PTEN	
   in	
  
transformed	
  cell	
  lines	
  (reviewed	
  in	
  (50)).	
  

100	
  

	
  
   97   98   99   100   101   102   103   104   105   106   107