Page 310 - 73_04
P. 310
RAFAEL MAYORAL Y COLS. ANAL. REAL ACAD. NAC. FARM.
(56) ENGELMAN, J. A., LEE, R. J., KARNEZIS, A., BEARSS, D. J., WEBSTER, M., SIEGEL,
P., MULLER, W. J., WINDLE, J. J., PESTELL, R. G. AND LISANTI, M. P. (1998)
(57) Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein
(58) expression in vitro and in vivo. Implications for human breast cancer. J.
(59) Biol. Chem. 20448-20455.
(60) GARCIA-CARDENA, G., FAN, R., STERN, D., LIU, J. AND SESSA, W. C. (1996) Endo-
(61) thelial nitric oxide synthase is regulated by tyrsosine phosphorylation and
(62) interacts with caveolin-1. J. Biol. Chem. 271: 27237–27240.
LIU, J., GARCIA, G. AND SESSA, W. C. (1996) Palmitoylation of endothelial
(63) nitric oxide synthase is necessary for optimal stimulated release of nitric
(64) oxide: implications for caveolae localization. Biochemistry. 35: 13277–13281.
(65) MICHEL, J. B., FERON, O., SACKS, D. AND MICHEL, T. (1997) Reciprocal regula-
(66) tion of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin.
(67) J. Biol. Chem. 272: 15583–15586.
SOWA, G., PYPAERT, M. AND SESSA, W. C. (2001) Distinction between signaling
mechanisms in lipid rafts vs. caveolae. Proc. Natl. Acad. Sci. U.S.A. 98:
14072–14077.
COUET, J., LI, S., OKAMOTO, T., IKEZU, T. AND LISANTI, M. P. (1997) Identifica-
tion of peptide and protein ligands for the caveolin-scaffolding domain.
Implications for the interaction of caveolin with caveolae-associated pro-
teins. J. Biol. Chem. 272. 6525–6533.
ENGELMAN, J. A., ZHANG, X. L., RAZANI, B., PESTELL, R. G. AND LISANTI, M. P.
(1999) p42/44 MAP kinase-dependent and -independent signaling pathways
regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and pro-
tein kinase a signaling cascades transcriptionally down-regulates caveolin-
1 promoter activity. J. Biol. Chem. 32333-32341.
GALBIATI, F., VOLONTE, D., LIU, J., CAPOZZA, F., FRANK, P. G., ZHU, L., PESTELL,
R. G. AND LISANTI, M. P. (2001) Caveolin-1 expression negatively regulates
cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/
Cip1)-dependent mechanism. Mo.l Biol. Cell. 2229-2244.
GALVEZ, B. G., MATIAS-ROMAN, S., YANEZ-MO, M., VICENTE-MANZANARES, M.,
SANCHEZ-MADRID, F. AND ARROYO, A. G. (2004) Caveolae are a novel pathway
for membrane-type 1 matrix metalloproteinase traffic in human endothelial
cells. Mol. Biol. Cell. 678-687.
PUYRAIMOND, A., FRIDMAN, R., LEMESLE, M., ARBEILLE, B. AND MENASHI, S. (2001)
MMP-2 colocalizes with caveolae on the surface of endothelial cells. Exp.
Cell. Res. 28-36.
OSTROM, R. S., VIOLIN, J. D., COLEMAN, S. AND INSEL, P. A. (2000) Selective
enhancement of beta-adrenergic receptor signaling by overexpression of
adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in
caveolae of cardiac myocytes. Mol. Pharmacol. Rev. 57: 1075–1079.
RYBIN, V. O., XU, X., LISANTI, M. P. AND STEINBERG, S. F. (2000) Differential
targeting of beta-adrenergic receptor subtypes and adenylyl cyclase to car-
diomyocyte caveolae. A mechanism to functionally regulate the cAMP sig-
naling pathway. J. Biol. Chem. 275: 41447–41457.
1120