Page 195 - 73_04
P. 195

VOL. 73 (4), 987-1008, 2007  CONTRIBUTION OF TNF-a TO OBESITY...

(11)  WEISBERG, S. P.; HUNTER, D.; HUBER, R.; LEMIEUX, J.; SLAYMAKER, S.; VADDI, K.;
(12)  CHARO, I.; LEIBEL, R. L. AND FERRANTE, A. W., JR. (2006) CCR2 modulates
(13)  inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116:
(14)  115-124.
(15)  HOTAMISLIGIL, G. S. (2003) Inflammatory pathways and insulin action. Int. J.
(16)  Obes. Relat. Metab. Disord. 27 Suppl 3: S53-S55.
(17)  CARLSON, C. J.; KOTERSKI, S.; SCIOTTI, R. J.; POCCARD, G. B. AND RONDINONE, C. M.
      (2003) Enhanced basal activation of mitogen-activated protein kinases in
(18)  adipocytes from type 2 diabetes: potential role of p38 in the downregulation
(19)  of GLUT4 expression. Diabetes. 52. 634-641.
(20)  PIROLA, L.; JOHNSTON, A. M. AND VAN OBBERGHEN, E. (2004) Modulation of in-
(21)  sulin action. Diabetologia. 47: 170-184.
      GAO, Z.; ZUBERI, A.; QUON, M. J.; DONG, Z. AND YE, J. (2003) Aspirin inhibits
(22)  serine phosphorylation of insulin receptor substrate 1 in tumor necrosis fac-
(23)  tor-treated cells through targeting multiple serine kinases. J. Biol. Chem. 278:
      24944-24950.
      KHAN, A. H. AND PESSIN, J. E. (2002) Insulin regulation of glucose uptake: a
      complex interplay of intracellular signalling pathways. Diabetologia. 45. 1475-
      1483.
      VOLLENWEIDER, P.; MENARD, B. AND NICOD, P. (2002) Insulin resistance, defec-
      tive insulin receptor substrate 2-associated phosphatidylinositol-3' kinase
      activation, and impaired atypical protein kinase C (zeta/lambda) activation
      in myotubes from obese patients with impaired glucose tolerance. Diabetes.
      51: 1052-1059.
      FUJII, N.; JESSEN, N. AND GOODYEAR, L. J. (2006) AMP-activated protein kinase
      and the regulation of glucose transport. Am. J. Physiol. Endocrinol. Metab.
      291: E867-E877.
      BRUNING, J. C.; MICHAEL, M. D.; WINNAY, J. N.; HAYASHI, T.; HORSCH, D.; ACCILI,
      D.; GOODYEAR, L. J. AND KAHN, C. R. (1998) A muscle-specific insulin receptor
      knockout exhibits features of the metabolic syndrome of NIDDM without
      altering glucose tolerance. Mol. Cell. 2: 559-569.
      FERNANDEZ, A. M.; KIM, J. K.; YAKAR, S.; DUPONT, J.; HERNANDEZ-SANCHEZ, C.;
      CASTLE, A. L.; FILMORE, J.; SHULMAN, G. I. AND LE ROITH, D. (2001) Functional
      inactivation of the IGF-I and insulin receptors in skeletal muscle causes type
      2 diabetes. Genes Dev. 1926-1934.
      ZISMAN, A.; PERONI, O. D.; ABEL, E. D.; MICHAEL, M. D.; MAUVAIS-JARVIS, F.;
      LOWELL, B. B.; WOJTASZEWSKI, J. F.; HIRSHMAN, M. F.; VIRKAMAKI, A.; GOODYEAR,
      L. J.; KAHN, C. R. AND KAHN, B. B. (2000) Targeted disruption of the glucose
      transporter 4 selectively in muscle causes insulin resistance and glucose in-
      tolerance. Nat. Med. 6: 924-928.
      HUANG, C.; THIRONE, A. C.; HUANG, X. AND KLIP, A. (2005) Differential contribu-
      tion of insulin receptor substrates 1 versus 2 to insulin signaling and glucose
      uptake in l6 myotubes. J. Biol. Chem. 280: 19426-19435.
      PLOMGAARD, P.; BOUZAKRI, K.; KROGH-MADSEN, R.; MITTENDORFER, B.; ZIERATH, J.
      R. AND PEDERSEN, B. K. (2005) Tumor necrosis factor-alpha induces skeletal

                             1005
   190   191   192   193   194   195   196   197   198   199   200