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1. INTRODUCTION 

Cardiovascular diseases are the first cause of death 
globally, accounting for more than 30% of deaths which 
means that 17.5 million people die annually from 
cardiovascular disease. In Spain, the number of deaths due 
to cardiovascular diseases in 2014 was over 129,000 
people and this number will increase in 2020 reaching 
142.000 deaths. According to the “Centro de Estudios 
Económicos y Empresariales” the direct costs of 
cardiovascular diseases have been estimated over 5.900 
million of euros in 2014 and the indirect costs due to 
morbidity associated with cardiovascular disease as well as 
absence from work have been estimated over 60 million 
euros. 

Reactive oxygen species (ROS) are essential mediators 
of cell physiology. They can modulate the activity of many 
signaling molecules including kinases, phosphatases, 

transcription factors and cytoskeleton proteins and thus, 
they regulate different cellular processes. ROS play an 
important physiological role in controlling vascular tone 
and structure and they can also contribute to pathological 
mechanisms related to endothelial dysfunction, vascular 
reactivity, arterial remodeling and vascular inflammation. 
The NADPH oxidases are the main source of ROS in the 
cardiovascular system. Seven members have been 
characterized and depending on the isoform, they are 
expressed in different cardiovascular cell types and 
cellular compartments regulating diverse functions such as 
proliferation, migration, differentiation, apoptosis, 
senescence and inflammatory responses (1-3). For several 
decades, the role of NADPH oxidase in chronic 
granulomatous disease has been known due to the key role 
of NADPH oxidase in neutrophils. This concept has been 
now extended to cardiovascular diseases since strong 
evidences have demonstrated that NADPH oxidase-
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derived ROS released from phagocytic and vascular cells 
are involved in many processed associated to 
cardiovascular disease. Thus, many studies performed 
mainly in animal models have demonstrated that increased 
oxidative stress state is necessary for the initiation and 
progression of vascular disease that may ultimately lead to 
heart attack and strokes. Some members of the NADPH 
oxidases are constitutively expressed in the vasculature. 
However, different hormones, inflammatory mediators or 
hemodynamic stimuli important in cardiovascular diseases, 
increase the activity or the expression of NADPH oxidase 
isoforms leading to a deleterious oxidative stress status in 
the cardiovascular system. These changes trigger the 
production of growth factors, proteases and cellular 
adhesion molecules by different vessel cell types leading 
to structural changes in the wall of the vessel in a process 
known as vascular remodeling.  

In this review, we discuss in detail the composition and 
regulation of the main NOX enzymes expressed in the 
media layer (NOX-1 and 4) and their roles in vascular 
remodeling associated with cardiovascular diseases. 

2. VASCULAR REMODELING 

2.1. Artery structure 

Arteries are divided in three concentrical layers from 
the inside out: intima, media and adventitia which are 
organized in cellular components and extracellular matrix 
(ECM) (Figure 1).  

 
Figure 1. Artery structure. Wall section showing all layers of 
an artery wall. 

- Intima: it is in the inner part of the vessel and 
comprises a monolayer of endothelial cells which lay in 
the basement membrane. This layer of endothelial cells is 
separated from the media layer by the internal elastic 
lamina which is a fenestrated lamina of elastic fibers. The 
intima layer is important in the control of vascular function 
and structure because endothelial cells are an important 
source of vasoconstrictor/vasodilator and 
proliferative/antiproliferative factors.  

- Media: this layer includes circumferentially arranged 
vascular smooth muscle cells (VSMCs) and variable 

amounts of ECM. The tunica media is separated from the 
tunica adventitia by a second layer of elastic fibers, the 
external elastic lamina. In response to different vasoactive 
factors and hemodynamic forces, VSMCs can release a 
variety of substances which affect vascular tone and 
structure. 

- Adventitia: it is mainly formed by fibroblasts but it 
also contains macrophages and mast cells and different 
components of the ECM. In the last years, it has become 
evident that the adventitia is not only a mechanical support 
for the vessel but also an active player of the regulation of 
vascular tone and structure by releasing different factors. 

The ECM is a gel-like form which functions as a 
scaffolding structure for the vascular cells and determines 
the elasticity and mechanical properties of the vessels. 
Their components are synthetized by different cell types of 
the vascular wall. The two main ECM proteins are 
collagen and elastin; while elastin confers the elastic 
properties to vessels, collagen provides the strength (4). 
There are other ECM proteins that are in less quantity such 
as glycoproteins, proteoglycans and integrins that are 
involved in several cellular processes (4). Among them, 
tenascin-C (TN-C), which is an inducible glycoprotein, 
expressed predominantly in embryonic, remodeled adult 
tissues and in pathological conditions, is particularly 
interesting. Competitive binding of TN-C to ECM proteins 
and their counterpart cell-surface receptors mediates its 
ability to modulate cell-ECM interactions. The capacity of 
TN-C to interact with a wide range of ECM molecules 
may also enable it to contribute to the structural 
organization of the ECM. In addition, TN-C can promote 
migration and proliferation by direct activation of cell-
surface growth factor receptors and cellular differentiation 
by up-regulating androgen receptor and endothelin type 1 
receptor expression (5). Thus, TN-C relevance relies on its 
implication in vascular cell differentiation, proliferation 
and migration (5). 

2.2. Types of vascular remodeling 

It is now accepted that the vascular wall can change its 
structure in order to maintain the appropriate lumen size to 
permit normal blood flow. This process is termed vascular 
remodeling (6). This ability of the arteries to adapt its 
structure in response to physiological and pathological 
conditions is essential in situations such as pregnancy or 
aging but also in many arterial diseases. Thus, the inability 
of the vessels to remodel appropriately is considered a 
form of “vascular failure” that can lead to pathologic states 
such as hypertension, atherosclerosis or restenosis (7). 
This process is active and involves structural changes 
including cell growth, death, migration and the synthesis 
or degradation of the ECM (7). 

Vascular remodeling can occur with or without growth 
of the vessel wall (i.e. hypertrophic, eutrophic or 
hypotrophic) and with smaller, greater or similar lumen 
size (inward, outward or compensated) (8). Vascular 
remodeling often differs depending on the vessel type or 
the cardiovascular disease model (Figure 2). 
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Figure 2. Types of vascular remodeling. Classification refers to 
changes on the lumen diameter (inward: upper row or outward 
lower row) and vessel cross-sectional area (hypotrophic: left 
column; eutrophic: center column and hypertrophic: right 
column). Adapted from Mulvany (8). 

- Hypertrophic remodeling is characterized by an 
increase in the media thickness, media/lumen and vascular 
cross sectional area associated with a more evident 
contribution of cell growth (8). This type of remodeling is 
characteristic of large arteries in ageing or in pathologies 
like hypertension (9) or restenosis which is associated with 
proliferation and migration of different cells types (7). 

- Hypotrophic remodeling is associated with a 
decrease in the amount of material (i.e. diminished cross 
sectional area) around the vessel wall (8). This type of 
remodeling may be related to apoptosis processes and/or to 
rearrangement of the material in the vessel wall (10). 
Hypotrophic remodeling has been shown in renal afferent 
arterioles from spontaneously hypertensive rats (SHR) (11) 
and in mesenteric resistance arteries from ouabain-induced 
hypertensive animals (12). Moreover, patients with 
autosomal dominant hyperimmunoglobulin E syndrome 
were found to have a high prevalence of hypotrophic 
remodeling in carotid arteries with an increased 
circumferential stress and enhanced susceptibility to 
dilation and aneurysm formation associated to angiotensin 
II (AngII) and apolipoprotein E (13). 

- Eutrophic remodeling is characterized by a decrease 
in the outer and lumen diameters and an increase in the 
media thickness and the media/lumen ratio with no change 
in the wall cross sectional area (8). It has been suggested 
that this type of remodeling is due to rearrangement of the 
same amount of wall material around a smaller vessel 

lumen (14, 15). The mechanisms leading to this type of 
remodeling are poorly known but some authors suggest 
that a combination of inward growth and peripheral 
apoptosis or prolonged vasoconstriction of vascular cells 
embedded in an expanded ECM can lead to eutrophic 
remodeling (9, 16). 

The importance of the vascular structural abnormalities 
in cardiovascular diseases, such as hypertension, lies on 
the fact that in patients it has been demonstrated that the 
media to lumen ratio parameter has a prognostic value of 
cardiovascular events in a high-risk population (17, 18). 
Thus, the presence of structural alterations in the 
microcirculation may be considered an important link 
between hypertension and ischemic heart disease, heart 
failure, cerebral ischemic attacks, and renal failure (15).  

Vascular tone and structure are regulated by the 
equilibrium between vasodilator- antiproliferative- 
antifibrotic factors and vasoconstrictor- proliferative- 
profibrotic factors, which are released in large part, by the 
ECs and VSMCs in response to mechanical or chemical 
stimuli. The imbalance between these substances leads to 
the endothelial dysfunction and/or the vascular remodeling 
observed in cardiovascular diseases. Vascular remodeling 
can be induced by dynamic interactions between local 
growth factors, vasoactive substances and hemodynamic 
stimuli being all important mediators in the vascular 
adaptation process. The number of mediators involved in 
altered vascular structure is continuously growing; 
however, to date it is well admitted that AngII, cytokines, 
prostanoids and ROS have a key role (7). 

2.3. Cell proliferation and migration 

As mentioned, wall thickening is one of the main 
features of many cardiovascular diseases. Depending on 
the specific vascular bed and pathology, the cellular and 
non-cellular events leading to altered vascular structure 
might be different. Thus, hypertension causes arterial 
media thickening with or without cell growth, and ECM 
deposition in both humans and animal experimental 
models; however, atherosclerosis and reaction to injury 
such as endothelial denudation or restenosis cause intimal 
thickening associated to variable degrees of alterations in 
the surrounding ECM (19, 20) (Figure 3). Although it is 
known that during vascular remodeling VSMC 
proliferation and migration are processes that take place, 
their regulation is not exactly known. 
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Figure 3. Pathophysiological mechanisms of arterial remodeling. Cross sectional schematic view of the arterial wall in (A) normal 
situation or (B) during arterial remodeling. Thickening of the wall is the main feature of arterial remodeling. Elastic fiber degradation, 
extracellular matrix calcification, collagen deposition and vascular smooth muscle cell migration and phenotype switching lead to 
adaptation of the vascular wall. Matrix metalloproteinase (MMP). Modified from van Varik et al. (20). 

Intimal thickening can occur in blood vessels as a 
consequence of physiological process as occurs in ageing, 
in response to increased intraluminal pressure, or after 
vascular injury as observed in balloon dilatation, stent 
implantation or atherosclerosis processes (21). Because of 
its importance, many in vivo models of VSMC growth and 
proliferation such as the carotid ligation mouse model have 
been developed. In this model, an intima lesion 
characterized by enrichment of VSMCs occurs in response 
to luminal narrowing leading to the formation of the 
neointima (19, 21). Neointima is part of the reparative 
response to injury and its formation involves an important 
inflammatory component with infiltration of inflammatory 
cells and release of cytokines and chemokines, thrombosis, 
increase in the number of VSMCs and matrix production 
leading to a reduction in vessel diameter (19, 22, 23). The 
increased number of VSMCs is mainly originated by 
migration from the underlying media and proliferation, 
although there are other processes involved such as 
transdifferentiation of endothelial cells or differentiation 
from circulating precursors (7, 20, 21) (Figure 3). 

The involvement of cell proliferation and/or migration 
in hypertensive vascular remodeling mainly depends of the 
vascular bed and the experimental model studied. Thus, 
coronary but not mesenteric vessels from SHR show 

increased VSMC number (24). In addition, administration 
of AngII, the main effector peptide of the renin-
angiotensin-aldosterone system (RAAS) lead to a 
progressive increase in blood pressure and media 
thickening through migration, proliferation and 
hypertrophy of the VSMCs, being this effect mediated 
through the AngII type 1 receptor (AT1R) (7, 25-28) 
(Figure 4). Besides hemodynamic and humoral factors, in 
the last years it has become evident that vascular 
infiltration of immune inflammatory cells and pro-
inflammatory mediators such as ROS are key contributors 
to the vascular remodeling observed in this pathology (29-
31). 

Cell proliferation and migration begin with stimulation 
of cell surface receptors that transduce the external signal 
to a series of coordinated responses inside the cell. Diverse 
signal transduction systems such as nuclear factor-kappa B 
(NF-kB), the activator protein-1 (AP-1), the mitogen 
activated protein kinases (MAPKs) or the 
phosphatidylinositol-3-kinase (PI3K)/Akt pathways have 
been proposed to translate the stimulus within VSMCs 
(32). However, despite of the growing information 
regarding the mechanisms controlling VSMC migration 
and proliferation in response to stimuli such as AngII (28), 
the regulation in response to other stimuli is less known. 
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Figure 4. Role of ROS in AngII induces proliferation, migration and/or hypertrophy of VSMCs. Arrows indicate the main 
biological end points preceding cell proliferation, migration and hypertrophy in response to AngII. Adapted from Chiou et al. (28). 

3. REACTIVE OXYGEN SPECIES 

ROS are reactive derivatives of the oxygen metabolism 
with superoxide anion (O2

-.), hydrogen peroxide (H2O2) 
and peroxynitrite (ONOO-) being of major importance. 
There is an apparent paradox between the roles of ROS as 
essential biomolecules in the regulation of many cellular 
functions and as toxic by-products of metabolism that may 
be related at least in part, to differences in the 
concentrations of ROS produced. Thus, at low intracellular 
concentrations, ROS have a key role in the physiological 
regulation of vascular tone, cell growth, adhesion, 
differentiation, senescence and apoptosis. However, 
excessive ROS levels may be associated with the 
development of several cardiovascular diseases (33, 34).  

O2
•−, H2O2 and ONOO- are produced by almost all cell 

types including vascular cells. Besides NADPH oxidase, 
other sources of ROS in the vascular wall include 
mitochondria, xanthine oxidase (XO), uncoupled 
endothelial nitric oxide synthase (eNOS), endoplasmic 
reticulum, cyclooxygenase (COX), cytochrome P450 and 
lipoxygenase (35, 36). Mitochondria are a major cellular 
source of ROS. There are several sites in the electron-

transport chain where oxygen can be reduced to O2
•−, with 

complexes I and III being the sites with the greatest 
capacity (37). XO catalyzes the sequential oxidation of 
hypoxanthine to xanthine and xanthine to urate and can 
generate O2

•− and H2O2 (38). XO is mainly expressed in the 
endothelium and both its protein expression and O2

•− 

production can be activated by AngII (39). eNOS uses L-
arginine as substrate and tetrahydrobiopterin (BH4) as 
cofactor to generate NO. However, under pathological 
conditions, L-arginine or BH4 deficiency induces eNOS 
uncoupling resulting in O2

•− production (40).  
O2

•− is highly reactive, has a short half-life and is 
unable to diffuse across biological membranes except 
possibly via ion channels (33). O2

•− can dismute to H2O2, 
both spontaneously and enzymatically via any of the three 
isoforms of the superoxide dismutase (SOD): cytosolic 
Cu/Zn-SOD or SOD1, mitochondrial Mn-SOD or SOD2 
and extracellular EC-SOD or SOD3 (Figure 5). As 
mentioned, H2O2 can also be formed directly by some 
types of NOX such as NOX-4, DUOX-1 and -2 (1). H2O2 
is more stable than O2

•− and crosses membranes through 
some members of the aquaporin family (41). H2O2 is 
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rapidly metabolized to water and oxygen by several 
enzymatic systems such as glutathione peroxidase, catalase 
and the thioredoxin system (35, 42, 43) (Figure 5). In the 
presence of transition metals (such as Fe2+) H2O2 can be 
converted to hydroxyl radicals (HO•), which are highly 
reactive and can cause damage to lipids, proteins and 
DNA. In addition, NO which has a very short half-life, can 
react with O2

•− to form ONOO- that is capable of 
modifying the structure and function of proteins. Thus, 
ROS regulation is important to maintain redox 
environment of the cell. When there is an imbalance 
between oxidants and antioxidant systems increased ROS 
steady-state levels start multiple pathologies including 
inflammation and cardiovascular disease (1, 35). At low 
intracellular concentrations, ROS have a key role in the 
physiological regulation of vascular tone, cell growth, 
adhesion, differentiation, senescence and apoptosis (1, 44). 

However, an increase in the amount of ROS leads to 
pathological processes such as endothelial dysfunction, 
inflammation and proliferation or migration of VSMCs 
leading to vascular remodeling.  

The mechanisms responsible of ROS-associated 
pathological effects are multiple and include quenching of 
vasodilator NO by O2

-., generation of vasoconstrictor lipid 
peroxidation products, depletion of BH4, and induction of 
fibrosis through activation of matrix metalloproteinases 
(45). At intracellular level, ROS induce different processes 
such as increased intracellular calcium, activation of 
growth and inflammatory transcription factors and 
activation of different signaling pathways such as mitogen 
activated protein kinases (MAPK), protein tyrosine 
phosphatases, tyrosine kinase, PI3K, and RhoA/ROCK 
(34). 

 
Figure 5. Reactive oxygen species formation and metabolism. Major sources of ROS generation include the mitochondrial electron 
transport chain (Mito-ETC), endoplasmic reticulum (ER) system, NADPH oxidase and xanthine oxidase. Superoxide anion (O2

-.) is the 
main initial free radical specie which can be converted to other reactive species. In the mitochondria, O2

-. is generated by the capture of 
electrons escaping from the Mito-ETC by molecular oxygen (O2). O2

-. can be rapidly converted to hydrogen peroxide (H2O2) by 
superoxide dismutase (SOD), which is converted to H2O by catalase, glutathione peroxidase (GPX) or the thioredoxin (TRX) systems. In 
the presence of transition metals (such as Fe2+), H2O2 can be converted to hydroxyl radicals (HO.) NO has a very short half-life and can 
react with superoxide to form ONOO-. Glutathione reductase (GPR); glutaredoxin oxidized (GRXo); glutaredoxin reduced (GRXr); 
glutathione reduced (GSHr); glutathione oxidized (GSSG); thioredoxin oxidized (TRXo); thioredoxin reduced (TRXr). Adapted from 
Trachootham et al. (43). 

ROS can act as second messengers activating different 
intracellular signaling pathways. Particularly, H2O2 
induces post-translational oxidative modifications on 
sulfur containing amino acid of proteins. Although 

methionine and cysteine residues can be targets, the most 
important is the cysteine thiol group. ROS react with the 
sulfur atom of cysteine side chains leading to the 
formation of sulfenic acids (-SOH) that can affect proteins 
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implicated in cell migration. Depending on the 
environmental oxidative state these reactions are reversible 
or irreversible. Thus, in a reducing environment in the cell 
(normal status) this process is quickly reverted. 
Conversely, in a strongly oxidative environment, the 
sulfenic form is unstable and can undergo further oxidation 
via disproportionation (a type of redox reaction where a 
species is simultaneously reduced and oxidized to form 
two different products) to sulfinic (-SOH2) species. Under 
greater oxidative stress, the sulphonic (-SO3H) species can 
be created. Other possibilities for post-translational 
cysteine modifications include glutathionylation (-SSG) or 
the formation of an inter- or intramolecular disulfide bond 
(-SS-), thus causing protein oxidative damage (45-47). 
It is also well established, that redox-dependent signaling 
pathways in VSMCs include modifications in the activity 
of protein tyrosine kinases such as Src, Ras, JAK2, Pyk2, 

PI3K and EGFR, as well as MAPK, particularly p38 
MAPK, ERK1/2 and ERK5 which as mentioned, have a 
key role in cell migration and proliferation and hence in 
pathological vascular remodeling (45). These processes 
probably occur through oxidation/reduction of protein 
tyrosine phosphatases (PTP), which are susceptible to 
oxidation and inactivation by ROS. Increased intracellular 
ROS also induces an increase in intracellular free calcium 
concentration ([Ca2+]i) and an increase in intracellular pH 
(pHi) that also contribute to altered contraction and 
remodeling observed in pathological situations where ROS 
have a prominent role (45). Rho GTPases and actin are 
also sensitive to these modifications leading to actin 
cytoskeleton reorganization (45, 47, 48). Thus, ROS are 
able to induce VSMC proliferation and migration by a 
number of different intracellular signaling pathways 
(Figure 6). 

 
Figure 6. Intracellular mechanisms activated by ROS that participate in cardiovascular disease. NOX-derived ROS activate 
different signaling pathways as well as increase in pH and Ca2+. These processes lead to different cellular responses that will end in 
cardiovascular disease. Adapted from Briones and Touyz (45). 

To date, a number of studies have demonstrated that 
stimuli important for cardiovascular diseases induce 
VSMC migration and/or proliferation via ROS (49). For 
example, AngII regulates FAT atypical cadherin 1 (Fat1) 
expression and activity and induces Fat1-dependent 
VSMC migration via activation of AT1R, ERK1/2, and 
NOX-1-derived ROS (50). Similarly, PDGF-induced 
VSMC migration is ROS dependent and the 
Src/PDK1/PAK1 signaling pathway is important as a 
ROS-sensitive mediator of migration (51). Moreover, in 
VSMCs H2O2 induces cell migration by inducing the 
expression of a cytoskeleton protein, ARPC2, through a 
p38 MAPK-dependent mechanism (41) 

3.1. NADPH oxidases 

As mentioned, NADPH oxidases are the major source 
of ROS in the vascular wall in physiological and 
pathological conditions (1, 34, 52-54). The main catalytic 
function of NADPH oxidases is the generation of ROS, 

thus differing from the rest of the ROS-producing enzymes 
which produce ROS as a by-product of their activity. 
NADPH oxidase reduces oxygen to superoxide anion 
(O2

•−), being NADPH the electron donor; thus, there is an 
electron transfer from the cytosol across biological 
membranes. There are seven NADPH oxidases isoforms in 
mammals and all of them have a catalytic subunit called 
NOX (NOX-1-5) or DUOX (DUOX-1-2 also called NOX-
6-7) and up to seven regulatory subunits (Figure 7).  

NOX-1, NOX-2, NOX-4 and NOX-5 are expressed in 
the cardiovascular system. NOX-2 is the classical NOX 
that was primarily characterized in leukocytes. NOX-1, 
NOX-2 and NOX-3 activities are regulated by cytosolic 
adaptor proteins or “NOX organizers” (p47phox or 
NOXO1 and p40phox) and “NOX activators” (p67phox or 
NOXA1) that bind GTP-Rac and affect the flow of 
electrons (Figure 7). The p22phox component forms a 
stable heterodimeric complex with NOX core components 
(NOX-1-4), required for post-translation processing or 
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maturation into active oxidases. In NOX-1/NOX-3 
systems, p22phox also promotes plasma membrane 
targeting of the oxidases and provides a docking site for 
NOX organizers. However, NOX-4 only depends on 
p22phox in order to be active, is constitutively activated, 

and ROS production is regulated by Poldip2 (Figure 7). 
NOX-5 and DUOX are Ca2+-responsive oxidases that 
contain Ca2+-binding domain (Figure 7). NOX-1, NOX-2, 
NOX-3 and NOX-5 produce O2

•− while NOX-4, DUOX-1 
and DUOX-2 produce H2O2 (34, 55). 

 
Figure 7. Subunit composition of the seven mammalian NADPH oxidase isoforms. The catalytic subunits of NADPH oxidase (NOX) 
1-5, dual oxidase (DUOX) 1 and 2 are shown in blue. The stabilization subunit p22phox is shown in red. Cytosolic organizers: p40phox, 
NOX organizer 1(NOXO1) and p47phox; cytosolic activators: p67phox and NOX activator 1 (NOXA1); and small GTPases (RAC1 and 
RAC2), are shown in grey. Polymerase δ-interacting protein 2 (POLDIP2) and calcium-binding domains motifs are shown in orange or 
green respectively. Adapted from Montezano and Touyz (34) and Guichard et al. (55). 

Within the vascular wall, NOX isoforms locations vary 
depending on the cell type and the cellular compartments. 
Thus, endothelial cells express NOX-1, NOX-2, NOX-4 
and NOX-5; VSMCs mainly express NOX-1, NOX-4 and 
NOX-5; and adventitial fibroblasts mainly express NOX-2 
and NOX-4 (1). It is noteworthy that NOX-5 is only 
expressed in human cells (1). NOX distribution in 
subcellular compartments also varies within the cell. In 
VSMCs, NOX-1 is localized to the plasma membrane, 
caveolae and endosomes while NOX-4 seems to be in 
focal adhesions, endoplamic reticulum and nucleus (1, 56). 
Additionally, NOX-4 seems to be present in the 
mitochondria of cardiomyocytes (56).  

Because of their preferential expression in VSMCs and 
their importance in vascular remodeling, in the next part of 
the Review we will focus on specific aspects of NOX-1 
and NOX-4 including available information on regulation, 
function and their role in vascular remodeling. 
 

3.1.a. NOX-1 

NOX-1 is expressed in colon epithelium and also in 
other tissues including the vascular wall where it seems to 
be up-regulated in pathological conditions or after 
exposure to different agonists important in cardiovascular 
disease (54 ). Thus, in VSMCs NOX-1 is up-regulated by 
AngII (57, 58), PGF2α and PDGF (59), IFN-γ (60) or IL-1β 
(61). In addition, vascular NOX-1 expression is elevated in 
several in vivo animal models of hypertension such as two-
kidney two-clip renovascular hypertensive rats, DOCA salt 
hypertensive rats and AngII-infused mice (62-64). 
Moreover, NOX-1 expression is elevated during restenosis 
following balloon angioplasty (65). However, the role of 
NOX-1 in atherogenesis remains controversial with NOX-
1 being undetected in atherosclerotic rabbit (66) or human 
lesions (67, 68) and overexpressed in aorta from ApoE-/- 
mice (69).  

NOX-1 promoter has different binding sites for 
transcription factors including a member of CREB/ATF 
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family (59), AP-1 (70), NF-κB (71) or Janus kinase/Signal 
transducers and activators of transcription (JAK/STAT) 

(60) (Figure 8). 

 
Figure 8. Structure of human NOX-1 gene promoter. Binding sites for transcription factors involved in NOX-1 expression. 

Most of these studies have evaluated transcriptional 
regulation of NOX-1. However, to our knowledge, no 
studies have demonstrated post-transcriptional regulation 
of NOX-1. In fact, regulation of NOX-1 mRNA through 
its 3’UTR is conceivable because of the presence of AREs 
which are implicated in mammalian mRNA degradation. 
Accordingly, our group has described in VSMCs a new 
mechanism whereby in the presence of AngII plus IL-1β, 
NOX-1 expression is potentiated through HuR-dependent 
NOX-1 mRNA stabilization. Moreover, exacerbated 
NOX-1 expression is responsible for an increased NADPH 
oxidase activity, ROS production and cell migration (72).  

3.1.b. NOX-4 

NOX-4 is very abundant in kidney and it seems 
ubiquitously expressed mainly in differentiated cells. 
NOX-4 is mostly found in focal adhesions and in the 
endoplasmic reticulum (73-75). As mentioned, its structure 
differs from NOX-1 and enables the protein to directly 
produce H2O2 (76, 77). It has been suggested that the 
predominant factor controlling NOX-4-dependent ROS 
formation is the expression level of the enzyme (44); 
therefore, the knowledge of the mechanisms responsible of 
its expression is very important. 

It seems now accepted that NOX-4 is constitutively 
active (56). However, less clear is whether NOX-4 
expression can be modulated and variable data regarding 
NOX-4 induction are found in the literature. Thus, hypoxia 
induces NOX-4 expression in pulmonary artery SMC (78, 
79) and TGF-β induces NOX-4 in cardiomyocytes and 
vascular cells (80-82). However, thrombin, PDGF and 
peroxisome proliferator-activated receptor-γ (PPAR-γ) 
ligands reduce NOX-4 expression in VSMCs and 
endothelial cells, (57, 83, 84). Moreover, other stimuli 
including AngII and IL-1β have demonstrated to up-
regulate, decrease or no affect NOX-4 expression in 
vascular cells (57, 58, 76, 83, 85). Our group has proposed 
that IL-1β decreases NOX-4 expression in VSMCs and 
consequently H2O2 production involved in cell migration 
(72). Reasons for these differences remain elusive but 
different locations in different cell types or presence of 
different NOX-4 isoforms might contribute to the observed 
findings (54).  

In vivo studies have tried to shed light on the role of 
NOX-4 in cardiovascular disease; however, findings are 
still far from being conclusive. Depending on the 
pathology or the blood vessel studied, increased, decreased 
or unchanged NOX-4 expression can be found (56). Thus, 
in SHR, NOX-4 levels have been reported to be unchanged 
in aged aorta (86). In contrast, NOX-4 mRNA expression 
seems to be higher in basilar arteries (87) or aorta (64) 
from SHR compared to normotensive Wistar-Kyoto rats. 
Similarly, increased NOX-4 expression has been observed 
in the renal cortex of aldosterone-salt rats and in aorta of 
AngII-infused mice (88, 89). In human atherosclerosis, 
NOX-4 expression is increased in intimal lesions of 
coronary arteries (67); however, in experimental 
atherosclerosis, NOX-4 expression is unchanged in the 
aorta of ApoE-/- mice or in primate models (90, 91).   

NOX-4 regulation seems to be mostly transcriptional 
(Figure 9). NOX-4 has been proposed to be a 
housekeeping gene because its promoter region contains 
many GC bases (92). E2F1 transcription factor is involved 
in the basal NOX-4 expression in rodent VSMCs (93). Sp3 
and three GC-boxes containing putative Sp/Klf binding 
sites are also essential for the basal expression of the NOX-
4 gene (94). Furthermore, in human endothelial cells, 
NOX-4 basal transcription is dependent of the 
deacetylation of transcription factor(s) and polymerase(s) 
(95). Regarding the inducible expression of NOX-4, 
JAK/STAT and NF-κB seem to be involved in NOX-4 
expression in response to IFN-γ or TNF-α (60, 71). In 
addition, hypoxia induces NOX-4 through a hypoxia-
inducible factor-1α (HIF-1α) dependent mechanism 
contributing to maintain ROS levels in smooth muscle 
cells from pulmonary artery (79). However, the 
mechanisms whereby NOX-4 is down-regulated are poorly 
understood. JunD, a member of the AP-1 family of 
transcription factors, is emerging as a major gatekeeper 
against oxidative stress. Interestingly, JunD knockout mice 
show an increased vascular expression of NOX-4 (96). 
However, additional mechanisms might contribute to 
NOX-4 down-regulation in response to different stimuli. 
Our group has suggested that a repressor of new synthesis 
is necessary for IL-1β-mediated NOX-4 transcriptional 
down-regulation which binds to NOX-4 proximal 
promoter (72). 
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Figure 9. Structure of human NOX-4 gene promoter. Binding sites for transcription factors involved in NOX-4 expression. Retinoid X 
receptor (RXR). 

3.2. Role of NOX-derived ROS in vascular remodeling 

NOXs are important in physiological processes 
including host defense, aging, and cellular homeostasis. 
However, the up-regulation of different NOXs, including 
NOX-1 and NOX-4, has been implicated in several 
cardiovascular diseases such as atherosclerosis, 
hypertension, diabetes, isquemia/reperfusion, restenosis or 
abdominal aortic aneurisms. Thus, NOX-derived ROS 
contribute to the oxidative stress, vascular inflammation, 
endothelial dysfunction and vascular remodeling observed 
in these cardiovascular pathologies (1, 34, 52-54, 99). The 
mechanisms whereby NOX-derived ROS contribute to 
altered vessel structure include modulation of cell growth, 
apoptosis, migration, inflammation and ECM production 
(1, 25). This is based on both in vitro and in vivo studies 
using genetically modified animals and experimental 
models of hypertension, atherosclerosis, aneurysms and 
others. However, although a causal relationship has clearly 
been demonstrated in many animal studies, an effective 
ROS-modulating therapy still remains to be established by 
clinical studies. In addition, despite of the amount of 
literature available on this subject, the regulation of 
specific NOXs in vascular cells is not completely 
understood. 

As mentioned, many in vitro studies have demonstrated 
the role of oxidative stress as facilitator of different 
processes leading to vascular remodeling (26, 41, 50). In 
addition, several studies in different animal models, have 
demonstrated the key role of ROS from different origins in 
vascular remodeling in cardiovascular diseases such as 
hypertension. Thus, in stroke-prone SHR, tempol, a SOD 
analogue, decreased vascular O2

•−concentration, increased 
antioxidant status and reduced vascular remodeling 
observed in this hypertensive model (100). Accordingly, in 
the AngII-infused mouse and deoxycorticosterone acetate-
salt-induced hypertensive rat models, apocynin, a non-
specific NADPH oxidase inhibitor, prevented structural 
alterations and collagen deposition (64, 101, 102). Finally, 
mito-TEMPO, a mitochondria-targeted SOD mimetic, also 
reduced structural alterations induced by AngII infusion 
(64). On the other hand, exercise training induces 
beneficial effects in the structure and/or mechanics of 
resistance arteries in hypertension probably through effects 
on oxidative stress (24). In addition, different drugs 
(angiotensin-converting-enzyme inhibitors and AngII and 
mineralocorticoid receptor blockers) with demonstrated 
beneficial effects on vascular remodeling are able to 
reduce ROS generation in experimental models and in 

humans with cardiometabolic pathologies (9, 103). Besides 
having a role on hypertensive vascular remodeling, ROS 
are also involved in vascular remodeling in the context of 
other cardiovascular diseases such as abdominal aortic 
aneurisms or atherosclerosis and the reader is referred to 
excellent reviews on this subject (104, 105).  

Regarding the specific NOX isoform involved in 
vascular remodeling, genetic manipulation in vitro or in 
vivo using transgenic knockout or overexpressing mice 
have yielded additional although not conclusive results. It 
seems that NOX-1-derived ROS are implicated in 
migration of different cell types, such as in VSMCs 
stimulated with thrombin, PDGF or bFGF (106, 107). 
NOX-1 also plays a role in proliferation since targeting 
NOX-1 with antisense or siRNA or genetic deletion in 
VSMCs inhibits proliferation induced by different stimuli 
(107-109). Similarly, in the wire injury-induced neointima 
formation model, both proliferation and apoptosis were 
reduced in NOX-1 knockout mice (NOX-1y/-) but there 
was little difference in mice overexpressing NOX-1 
compared with wild type mice (107). Accordingly, 
proliferation and migration were reduced in response to 
PDGF in cultured NOX-1y/- VSMCs and increased along 
with ECM production in cells overexpressing NOX-1 
compared with wild type VSMCs (107), suggesting that 
NOX-1 is required for the neointima formation. Several 
studies have evaluated the role of NOX-1 in vascular 
remodeling in response to AngII. AngII induces VSMC 
proliferation and migration as well as carotid artery 
hyperplasia in rats via AT1R interaction with NOX-1 (26). 
Interestingly, in response to AngII, NOX-1y/- mice showed 
a marked reduction in aortic media hypertrophy (110, 
111), but this reduction was due to a marked decrease in 
ECM accumulation and not in the number of VSMCs since 
AngII-induced VSMC proliferation was conserved (110). 
Conversely, (112) demonstrated that AngII did elicit 
similar hypertrophic response in the thoracic aorta of 
NOX-1y/- and NOX-1y/+ mice although superoxide 
production was blunted in NOX-1y/-. According to these 
findings, our group has also demonstrated that AngII plus 
IL-1β induced NOX-1-dependent VSMC migration (72). 
Finally, transgenic mice overexpressing NOX-1 in VSMCs 
showed markedly greater superoxide production, systolic 
blood pressure and aortic hypertrophy in response to AngII 
than their littermate controls, which were partially reversed 
by tempol treatment (52). Altogether, these findings 
suggest that cell specific location of NOX-1 might be the 
key to modulate hypertrophic vascular remodeling being 
NOX-1 from VSMCs of fundamental importance. 
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Regarding mechanisms activated by NOX-1-derived ROS, 
it has been demonstrated that in the presence of some 
stimuli, NOX-1 activates different proteins involved in cell 
adhesion and migration such as paxilin, Rac, RhoA and 
cofilin (44). Moreover, recently NOX-1 has been shown to 
be involved in matrix metalloproteinase-9 expression, a 
metalloproteinase essential in cell migration since NOX-1 
siRNA reduced matrix metalloproteinase-9 expression 
(44). 

The functional role of NOX-4 in vascular cells is under 
debate (54, 56). NOX-4 depletion leads to a loss of 
differentiation markers gene expression in adult VSMCs, 
while in mouse embryonic stem cells, NOX-4 
overexpression increased VSMC differentiation markers 
(113, 114). These results suggest that NOX-4 contributes 
to the maintenance of a differentiated state of the cell 
preventing cell activation or proliferation (44, 54, 113, 
115), suggesting a protective effect of NOX-4. However, 
transgenic mice with cardiac specific overexpression of 
NOX-4 showed decreased left ventricular function with 
enhanced O2

•−, production in the heart, which was 
accompanied by increased apoptosis and fibrosis, 
suggesting a deleterious role for NOX-4 (116). 
Interestingly, NOX-4-/- mice developed exaggerated 
contractile dysfunction, hypertrophy and cardiac dilatation 
during exposure to chronic overload, whereas mice with 
cardiomyocyte-targeted overexpression of NOX-4 were 
protected (117). The different functions of NOX-4 might 
also depend on the disease model or stimulus to be studied 
(56). In the AngII-infused mouse model, aortas from 
NOX-4-deficient animals developed increased 
inflammation, media hypertrophy and endothelial 
dysfunction compared to their wild type littermates (111) 
suggesting that NOX-4 might act as a protective enzyme. 
Besides acting on differentiation, proliferation and 
migration, NOX-4 has a role in other processes involved in 
vascular remodeling such as apoptosis, senescence and cell 
cycle (54). Indeed, 7-ketocholesterol-induced apoptotic 
events were abolished silencing NOX-4 expression, while 
NOX-4 down-regulation inhibited TGF-β1-dependent cell 
proliferation in VSMCs and PASMCs respectively by 
regulating ROS production and signaling cascades (81, 
118). Thus, it has been suggested that NOX-4 might 
regulate fundamental cellular processes that contribute to 
each of these responses (54).  

Reasons for so different roles for NOX-1 and NOX-4 
in vascular biology are far from being clarified. As 
mentioned, NOX-4 is a special NOX because it has a high 
constitutive activity, is highly expressed in some cells such 
as endothelial cells and its subcellular location is different 
to other NOXs (56). Moreover, different from NOX-1 and 
NOX-2, NOX-4 releases predominantly H2O2. Although 
not extensively studied, H2O2 in the media and endothelial 
layers may have different functions. Thus, smooth muscle-
specific catalase overexpression blocks the H2O2-mediated 
AngII-induced vascular hypertrophy (119) whereas 
endothelial-specific catalase overexpression prevents 
exercise-stimulated induction of eNOS (120). Future 

studies with improved tools will reveal the true nature of 
the role of NOX-4 in both health and disease (56). 

4. CONCLUSSIONS AND PERSPECTIVES 

ROS production in the vasculature by vascular and 
non-vascular cells is a highly regulated process. ROS act 
as signaling molecules, mainly through oxidative 
modification of proteins and subsequent activation or 
inhibition of different proteins involved in different 
processes including cell signaling or gene transcription. In 
cardiovascular diseases, ROS contribute to vascular injury 
by promoting among other processes vascular cell growth, 
migration, ECM protein deposition, activation of matrix 
metalloproteinases or inflammation, which in turn will 
favor vascular remodeling. The NADPH oxidase family, is 
an important source of ROS in the arterial wall during 
cardiovascular diseases and modulate vascular remodeling. 
As for the specific NOX isoform NOX-1 and NOX-4 seem 
to be particularly important, however, it is well known that 
activation of other NOXs (NOX-2 and NOX-5) also 
contribute to O2•− production in rodent and/or human 
VSMCs (54). The above findings suggest that strategies to 
reduce ROS may have therapeutic potential in 
cardiovascular alterations in patients. However, results in 
humans on this aspect have been not clarifying (34). It has 
been proposed that prevention of ROS generation using 
specific inhibitors of ROS producing enzymes such as 
those of the NADPH oxidase family may be better to 
reduce oxidative stress than attempting to scavenge ROS 
once they have generated (1). However, to date no 
selective inhibitors of NOX that can be used in clinics 
have been developed. Long-term awaited studies are 
necessary to know if such strategies would be useful in 
vascular remodeling associated to cardiovascular diseases. 
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