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ABSTRACT 

Acetaminophen (paracetamol, APAP) is a widely used analgesic and antipyretic 

drug safe at therapeutic doses but its overdose causes liver injury. Our goal was to 

explore whether protein tyrosine phosphatase 1B (PTP1B), a negative modulator 

of survival signaling pathways, plays a role in APAP-induced cell death in 

hepatocytes. Hepatotoxicity was evaluated in immortalized hepatocytes 

generated from wild-type (PTP1B+/+) and PTP1B-deficient (PTP1B-/-) mice. 

Apoptosis occurred as an early event only in APAP-treated PTP1B+/+ hepatocytes. 

PTP1B deficiency conferred protection against cell cycle arrest and loss of cellular 

viability. These data suggest that PTP1B as a target against APAP-induced liver 

failure. 
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RESUMEN 

La inhibición de la proteína tirosina fosfatasa 1B protege frente a la apoptosis 
temprana inducida por paracetamol en hepatocitos 

El paracetamol es un analgésico/antipirético hepatotóxico a dosis altas. 

Investigamos el papel de la proteína tirosina fosfatasa 1B (PTP1B), un modulador 

negativo de señalización de supervivencia celular, en la muerte celular temprana 

(apoptosis) inducida por paracetamol en hepatocitos. En hepatocitos controles se 

inducía apoptosis en respuesta al paracetamol. Este efecto se encontraba 

disminuido en hepatocitos deficientes en PTP1B. La falta de PTP1B protegía a los 

hepatocitos de la parada del ciclo celular y la pérdida de la viabilidad celular tras 

el tratamiento con paracetamol. Proponemos a la PTP1B como diana terapéutica 

frente al fallo hepático inducido por sobredosis de paracetamol. 

Palabras clave: Paracetamol, PTP1B, apoptosis. 
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1. INTRODUCTION 

Acetaminophen (APAP) or Paracetamol is a widely used analgesic and 

antipyretic drug safe at therapeutic doses (1). However, an accidental or 

intentional overdose can induce severe hepatotoxicity in both experimental 

animals and humans (2). The first reports of APAP hepatotoxicity in humans 

appeared in the literature in the 1960s. In fact, APAP overdose is the most frequent 

cause of drug-induced liver failure in the United States and in Great Britain at 

present (3). Therefore, APAP-induced acute toxicity has become an essential model 

for studying drug-induced liver and kidney failure. In the liver, APAP overdose 

produces a centrilobular hepatic necrosis that can be fatal and is increasingly 

recognized as a significant public health problem (4-6). Moreover, APAP overdose 

is also the second leading cause of liver transplantation, which accounts for 

considerable levels of morbidity and mortality (7). 

 APAP is commonly used for the relief of minor pains like headaches and in 

combination with opioid analgesics is also used in the management of more severe 

pains in advanced cancer and in post-operative periods. While APAP has analgesic 

and antipyretic properties comparable to those of aspirin, its anti-inflamatory 

effects are weak. The mechanisms underlying APAP-induced liver injury have been 

studied for several decades and excellent recent reviews have revealed the main 

cellular and molecular pathways involved in its toxic response (8-12). However, 

despite of substantial progress in our understanding of APAP-induced 

hepatotoxicity, additional mechanisms responsible of the cellular damage induced 

by this drug remain still unknown.  

The initial step in APAP-mediated toxicity is initiated by cytochrome P-450 

(CYP) by a direct two electron oxidation of APAP, a previously unrecognized 

mechanism of CYP P450-mediated reactions, that convert APAP to the reactive 

metabolite N-acetyl-p-benzoquinone imine (NAPQI) causing glutathione (GSH) 

depletion and covalent binding to hepatic parenchymal cell proteins and DNA (13). 

The CYP isoforms important in APAP metabolism are CYP2E1, CYP1A2, CYP3A4 

and CYP2D6 (14-15). Moreover, generation of reactive oxygen (ROS) and nitrogen 

species, lipid peroxidation, mitochondrial dysfunction, disruption of calcium 

homeostasis and induction of apoptosis and necrosis are also involved in APAP-

induced hepatotoxicity (16). 

At therapeutic doses, NAPQI is efficiently detoxified by GSH and eliminated 

in the urine or bile as APAP–cysteine, APAP–N-acetylcysteine (APAP–NAC), and 

APAP–glutathione (APAP–GSH). After an overdose of APAP, the glucuronidation 

and sulfation routes become saturated and more extensive bioactivation of the 

drug occurs leading to rapid depletion of the hepatic GSH pool. Subsequently, 

NAPQI binds to cysteine groups on cellular proteins forming APAP-protein adducts 

(17). Of note, NAPQI also binds to a number of mitochondrial proteins (9-10) 
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which, in turn, causes oxidative stress that may trigger signaling pathways through 

mitochondrial toxicity ultimately leading to lethal cell injury. 

As stated above, the precise mechanisms by which APAP mediates 

hepatotoxicity in both humans and experimental animals still remain to be 

elucidated. Metabolic activation of APAP and NAPQI binding to target proteins and 

DNA seem to be necessary but are not sufficient for toxicity. Recent findings 

indicate that a combination of mitochondrial oxidative stress, increased calcium 

levels and other factors may trigger the mitochondrial membrane permeability 

transition (MPT) pore opening resulting in the collapse of the transmembrane 

potential and then osmotic swelling. These events ultimately cause the rupture of 

the outer mitochondrial membrane and release of cytochrome c and other pro-

apoptotic factors into the cytosol (18). 

Regarding the signaling pathways mediated by various growth factors and 

hormones committed in the regulation of cellular metabolism, differentiation, 

growth and survival, protein tyrosine phosphorylation constitutes a key element. 

Given the importance of tyrosine kinase signaling in maintaining birth and death 

rates of cells, these pathways must be regulated carefully. Protein tyrosine 

phosphatases (PTPs) catalyze the dephosphorylation of tyrosine-phosphorylated 

proteins (19) and are known to be important negative regulators of growth factor 

signaling. Several PTPs have been described which may participate in modulating 

the balance between survival and cell death. Among them, protein tyrosine 

phosphatase 1B (PTP1B) is a widely expressed non-receptor PTP that is associated 

with the endoplasmic reticulum (ER) and other intracellular membranes via a 

hydrophobic interaction of its C-terminal targeting sequence (20). In particular, 

PTP1B dephosphorylates and inactivates receptors belonging to the tyrosine 

kinase superfamily such as the EGF receptor (EGFR) (21), the PDGFR (22), the 

insulin receptor (IR) (23) and the IGF-IR (24), all of them implicated in the survival 

of hepatocytes (25-26) and many other cellular models. Thus, PTPs represent 

novel molecular targets for the development of medicinal reagents that possess 

distinct modes of action. 

During the last years, our laboratory has been interested in the study of key 

proteins that mediate survival pathways in hepatocytes. In this regard, the precise 

role of PTP1B in these processes has been investigated in a study published by 

Gonzalez-Rodriguez et al. (27) which was performed in immortalized neonatal 

hepatocyte cell lines from wild-type (PTP1B+/+) and PTP1B-deficient (PTP1B-/-) 

mice. These cell lines have been proven to be excellent tools for in vitro studies of 

cell death/survival because they express endogenous pro- and anti-apoptotic 

proteins at levels comparable to the liver and hepatocytes of neonatal mice. Using 

these cell lines it was demonstrated that the lack of PTP1B protects against 

apoptosis induced by trophic factors withdrawal, whereas increased expression of 
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this phosphatase sensitizes neonatal hepatocytes to death signals induced by this 

apoptotic stimulus (27). These differential effects resulted from the regulation of 

multiple events involving mitochondrial integrity, the Bcl-2 protein family, the 

caspases-8,-9 and -3 and the nuclear translocation of Foxo 1 which activates the 

death receptor pathway. Thus, these previous observations suggested that levels of 

PTB1B may exert a pivotal role in maintaining the balance between survival and 

death in hepatocytes.  

On that basis, the main goal of the present study is to investigate if PTP1B 

deficiency is able to protect hepatocytes against the early events during APAP-

induced hepatotoxicity.  

2. MATERIALS AND METHODS 

2.1. Materials. 

Fetal serum (FS) and culture reagents were obtained from Invitrogen. APAP 

was purchased from Sigma (Sigma-Aldrich).  Anti-phospho-JNK (#9251) (Thr183/ 

Tyr185) and anti-active caspase 3 (#9661) antibodies were from Cell Signaling 

Technology. The antibodies against phospho-Akt (Ser 473) (sc-7985), phospho-

IGF-IR (Tyr 1165/1166) (sc-101704) and total JNK (sc-571) were from Santa Cruz 

Biotechnology. The anti-IRS-1 (06-248), anti-IRS-2 (06-248) and anti-mouse 

PTP1B (07-088) antibodies were obtained from Upstate (Millipore). Anti-BclxL 

(610211) antibody was from BD Pharmingen. Anti-β-actin (A-5441) antibody was 

from Sigma. Anti-Cyp2E1 antibody (aB19140) was from Abcam. Total Akt and total 

IGF-IR antibodies were gifts from M Birnbaum and MF White, respectively (Joslin 

Diabetes Center, USA). Anti GCLc and GCLm antibodies were a gift from T 

Kavanagh (University of Washington, USA). 

2.2. Human liver biopsies. 

Human liver samples were obtained from from five patients intoxicated 

with APAP and three healthy subjects.  These samples were kindly donated from 

Dr Kenneth J. Simpson in the division of Clinical and Surgical Sciences, University 

of Edinburgh, Edinburgh EH164TJ, UK. Informed written consent was obtained 

from each patient.  

2.3. Animal models. 

Three months-old male PTP1B+/+ (wild-type) and PTP1B-/- mice maintained 

on the C57Bl/6J x 129Sv/J genetic background (28) were used throughout the 

study. Animal experimentation was conducted accordingly to the accepted 

guidelines for animal care of the Comunidad de Madrid (Spain). Overnight fasted 

mice were intraperitoneally (i.p.) injected with 500 mg/kg APAP dissolved in 

physiological saline. Mice were sacrificed at 6 h and livers were collected.  
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2.4. Liver histology.  

Histological grading of hepatic necrosis was performed by two blinded 

oervbsers using hematoxilin and eosin (H&E)-stained sections as follows: 30% of 

the total area necrotic (1 point); 30–60% of the total area necrotic (2 points); 60% 

of the total area necrotic (3 points). 

2.5. Generation of immortalized hepatocyte cell lines.  

The detailed protocol for the generation of immortalized neonatal 

hepatocytes from wild-type and PTP1B-/- mice is described in (27). For re-

expression of PTP1B in deficient cells, PTP1B-/- neonatal hepatocytes were 

reconstituted with retroviral Myc-tagged PTP1B (kindly provided by M. L. 

Tremblay, McGill Cancer Center, Quebec, Canada) and four pools of infected cells 

were selected with hygromycin B (200 μg/ml) for 2 weeks. As a control, PTP1B-/- 

were infected with an empty vector (pBabe hygro). The expression of PTP1B in the 

different cell lines was assessed by Western blot. 

2.6. Isolation and culture of primary mouse hepatocytes.  

Mouse hepatocytes were isolated from male mice (8-12 weeks-old) by 

perfusion with collagenase and cultured as described (27). 

2.7. PTP1B immunohistochemistry.  

PTP1B expression was analyzed by immunohistochemistry in human liver 

samples as previously described (29). 

2.8. Determination of Reactive Oxygen Species (ROS).  

Cellular ROS were quantified by flow cytometry using the dichlorofluorescin 

(DCFH) probe.  APAP-stimulated cells were detached by trisinization and collected 

by centrifugation at 2.500 x g for 4 min. Then, cells were washed and resuspended 

in 500 microliters of PBS. DCFH (10 μM) and propidium iodide (0,002% w/v) were 

added 10 min before measurement. Fluorescence was measured with 488-nm 

laser excitation and 510-nm for emission. 

2.9. Analysis of caspase-3 activity.  

At the end of the treatments, cells were scraped off, collected by 

centrifugation at 2.500 x g for 5 min and lysed at 4ºC in 5 mM Tris/HCl pH 8, 20 

mM EDTA, 0,5% Triton X-100. Lysates were clarified by centrifugation at 13.000 x 

g for 10 min. Reaction mixtures contained 25 microliters of cell lysate, 325 

microliters of assay buffer (20 mM HEPES pH 7.5, 10% glycerol, 2 mM 

dithiothreitol) and 20 µM caspase-3 substrate (Ac-DEVD-AMC). After 2-hour 

incubation at 37ºC in the dark, enzymatic activity was measured in a luminescence 

spectrophotometer (Perkin Elmer LS-50, Norwalk, CT) (  excitation, 380 nm;  

emission, 440 nm). We define a unit of caspase-3 activity as the amount of active 

enzyme necessary to produce an increase in 1 arbitrary unit in the fluorimeter 
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after 2-hour incubation with the reaction mixture. Protein concentration of cell 

lysates was determined and the results are presented as caspase-3 

activity/micrograms of total protein. 

2.10. Cell viability and cytotoxicity.  

Cell viability/damage was determined by two alternative methods: gross 

detection of cell viability by using the crystal violet assay (30) and cytotoxicity 

assay by measuring lactate dehydrogenase (LDH) leakage into the extracellular 

medium (31). For the crystal violet assay, cells were seeded at low density (104 

cells per well) in 24-well plates, grown for 12 hours with the different treatments 

and incubated with crystal violet (0.2% in ethanol) for 20 min. Plates were rinsed 

with distilled water and allowed to dry and 1% SDS was then added. The 

absorbance of each well was measured using a microplate reader at 570 nm (Bio-

Tek, Winooski, VT, USA). Cytotoxicity was evaluated by the LDH method collecting 

both the culture medium and cells that were scraped in phosphate-buffered saline 

(PBS) after the different treatments. Then, cells were sonicated to ensure breaking 

down the cell membrane to release the total amount of LDH followed by 

centrifugation (1.000 ×g 15 min) to clear up the cell sample. 11 microliters of 

extract were placed into a well of a 96-multiwell system for the assay. In the same 

manner, 11 microliters of each culture medium sample were also deposited in each 

96-multiwell. The LDH leakage was estimated from the ratio between the LDH 

activity in the culture medium and that of the whole cell content. Fluorescence was 

measured at an emission wavelength of 460 nm and an excitation wavelength of 

340 nm. 

2.11. Quantification of apoptotic cells by flow cytometry.  

After APAP stimulation, adherent and non-adherent cells were collected by 

centrifugation, washed with PBS and fixed with cold ethanol. The cells were then 

washed, resuspended in PBS, and incubated with RNAse A (25 µg/106 cells) for 30 

min at 37ºC. After addition of 0.05% propidium iodide, cells were analyzed by flow 

cytometry. 

2.12. Analysis of alanine amino transaminase (ALT) activity.  

Blood was collected in tubes containing heparin and diluted 1/30 with 

saline (0.9% NaCl). ALT activity was determined by direct measurement with the 

Reflotron test (Ref. 10745120, Roche Diagnostics). 

2.13. Protein determination.  

Protein determination was performed by the Bradford dye method, using 

the Bio-Rad reagent and BSA as the standard. 
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2.14. Western blot analysis.  

To obtain total cell lysates, cells from supernatants were collected by 

centrifugation at 2.000 x g for 5 min at 4ºC. Attached cells were scraped off in ice-

cold PBS, pelleted by centrifugation at 4.000 x g for 10 min at 4ºC and resuspended 

in lysis buffer (25 mM HEPES, 2.5 nM EDTA, 0.1% Triton X-100, 1 mM 

phenylmethylsulfonyl fluoride and 5 µg/ml leupeptin). Cellular lysates were 

clarified by centrifugation at 12.000 x g for 10 min. After SDS-PAGE, gels were 

transferred to Immobilon membranes (Millipore), blocked using 5% non-fat dried 

milk or 3% bovine serum albumin (BSA) in 10 mM Tris-HCl, 150 mM NaCl pH 7.5 

(TBS) and incubated overnight with antibodies as indicated in 0.05% Tween-20-

TBS. Immunoreactive bands were visualized using the ECL Western blotting 

protocol (Millipore). 

2.15. Statistical Analysis.  

The data are expressed as means ± SD. The statistical significance was 

estimated with Student's test for unpaired observation (p*<0.05;  p**<0.01; and  

p***<0.001). 

3. RESULTS AND DISCUSSION 

PTP1B expression is induced in human liver during APAP intoxication.  

Cell proliferation and cell death are governed by stimulatory and inhibitory 

signals. Whereas trophic factors simultaneously stimulate mitosis and inhibit cell 

death, negative growth signals regulate the opposite of these biological effects. In 

the liver, trophic factors include endogenous growth factors such as EGF, bFGF, 

TGF-alpha and IGFs that act through receptors belonging to the tyrosine kinase 

superfamily (32). Thus, tyrosine phosphorylation may play a regulatory role in the 

induction and execution of programmed cell death in the liver. On that basis, our 

first goal in this work was to investigate whether an overdose of APAP induced the 

expression of PTP1B, a negative modulator of survival-mediated signaling 

pathways, in human liver biopsies obtained from individuals suffering from APAP 

intoxication. In our previous work (33) we showed elevated PTP1B expression in 

patients with APAP toxcicity that needed liver tranplantion. In agreement with 

this, Figure 1 shows elevated PTP1B expression in another patient suffering from 

APAP intoxication. Notably, immunostaining was detected  in surviving 

hepatocytes in the areas surrounding the central veins (right panel) as compared 

to a normal liver (left panel).  

PTP1B deficiency protects mouse hepatocytes against elevation of ROS.  

The fact that PTP1B has been related to the induction of apoptosis in 

hepatocytes under conditions of serum withdrawal (27) or activation of the Fas 

death receptor (34) prompted us to investigate the involvement of PTP1B in the 
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susceptibility of hepatocytes to undergo apoptotic cell death induced by APAP. As 

indicated in the introduction section, APAP overdoses cause severe hepatotoxicity 

leading to liver failure in experimental animals and humans. APAP hepatotoxicity 

is, in part, the result of a series of events that increase cellular oxidative stress. In 

the liver, Cyp2e1 converts APAP to NAPQI that rapidly depletes GSH and the 

subsequent generation of ROS (7), and therefore the degree of GSH consumption is 

a biomarker for APAP bioactivation (35). Both the catalytic and the modifier 

subunits of γ-glutamyl cysteine ligase (GCL-C and GCL-M) are responsible for 

glutathione synthesis. Since the expression of Cyp2e1, GCL-C and GCL-M did not 

change in primary and immortalized hepatocytes from both genotypes of mice 

(Figure 2A), we used immortalized cells for further experiments. 

 
Figure 1.-PTP1B expression is increased during APAP-induced liver injury. Representative 
anti-PTP1B immunostaining of liver biopsy sections from an individuals with histologically normal 
liver (NL) or with APAP overdose intoxication (APAP).  Bar scale 50 µm. 

  

It has been extensively reported that APAP hepatotoxicity concurs with 

elevated ROS (36). To evaluate the degree of cellular oxidative stress in APAP-

treated hepatocytes, the intracellular ROS production was estimated. Figure 2B 

shows a representative plot with the shift of the mean fluorescence after APAP 

treatment for 6 h at 0.5 and 1 mM concentrations in immortalized hepatocytes. 

Importantly, ROS production was significantly ameliorated in hepatocytes lacking 

PTP1B compared to the wild-type controls.  

Programmed cell death (apoptosis) induced by APAP treatment involves 

activation of caspase-3: protective effect of PTP1B deficiency.  

To further investigate whether caspase-3 is involved in APAP-induced 

apoptosis, we examined caspase-3 activity in wild-type and PTP1B-/- immortalized 

hepatocytes. Cells were treated with APAP in a dose-dependent manner and 

caspase-3 enzymatic activity was analyzed as described in Materials and Methods. 

As shown in Figure 3A, caspase-3 activity increased with APAP treatment for 8 h in 

wild-type hepatocytes with a maximal effect at 1 mM concentration. However, in 

the absence of PTP1B, hepatocytes were protected against activation of caspase-3 

upon APAP treatment. 
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Figure 2.- Effects of PTP1B deficiency in APAP-mediated effects in oxidative stress in 
hepatocytes. A. Whole cell lysates from PTP1B+/+ and PTP1B-/- mouse

 
primary (left panel) and 

immortalized (right panel) hepatocytes were analyzed by Western blot with the indicated 
antibodies. Representative autoradiograms are shown. B. Analysis of ROS levels in APAP-treated 
wild-type and PTP1B-/- immortalized hepatocytes for 6 h. Representative plots with the shift of the 
mean fluorescence after APAP treatment are shown. 

 

Caspases are synthesized as inactive zymogens, whose cleavage represents 
its activation (37). Accordingly, we examined the presence of the active fragment 
of caspase-3 (15-17 kDa) by Western blot analysis. As shown in Figure 3B, a 
marked increase in active caspase-3 fragment was observed in APAP-treated wild-
type immortalized hepatocytes for 8 h in a dose-dependent manner. However, in 
PTP1B-/- cells this effect was ameliorated. Importantly, at this early time point we 
could not see any decrease in the cellular viability as assessed by crystal violet 
staining and the analysis of LDH enzymatic activity suggesting that apoptosis is a 
very early event triggered by APAP in hepatocytes (Figure 4A, 4B). 
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Figure 3.- PTP1B-deficient hepatocytes are protected against APAP-induced caspase-3 
activation. PTP1B+/+ and PTP1B-/- immortalized hepatocytes were treated with various doses of 
APAP for 8 h. A. Analysis of caspase-3 enzymatic activity. B. Analysis of the active caspase-3 
fragment in total cell lysates by Western blot. *P<0.05 and ***P<0.005 PTP1B-/- vs. PTP1B+/+ cells 
(n=4 independent experiments). 

 

Effect of APAP treatment in the cell cycle of wild-type and PTP1B-/- hepatocytes.  

We next investigated the effects of APAP in the distribution of the 

hepatocytes along the phases of the cell cycle including the hypodiploid (sub 

G0/G1) population. In wild-type hepatocytes, APAP treament induced cell cycle 

arrest in S phase with a maximal effect at 0.5 mM dose. Of note, under these 

experimental conditions a twofold increase in the percentage of S phase arrested 

cells was observed  (Figure 5A). This effect was significantly ameliorated in 

hepatocytes lacking PTP1B. We also observed that APAP treatment increased the 

percentage of hypodiploid cells in wild-type hepatocytes, but again this effect was 

significantly reduced in PTP1B-/- hepatocytes (Figure 5B). This result indicates an 

apoptotic effect of APAP which was significantly reduced in hepatocytes lacking 

PTP1B.  



676 

 

 
Figure 4.- Immortalized PTP1B-deficient hepatocytes are protected against APAP-induced 
cell death.  PTP1B+/+ and PTP1B-/- immortalized hepatocytes were treated with various doses of 
APAP for 8 h. Cellular viability (A) and released LDH activity (B) were analyzed. *P<0.05, **P<0.01 
and ***P<0.005 PTP1B-/- vs. PTP1B+/+ hepatocytes (n=4 independent experiments). 

 

Cell death (irreversible loss of vital cellular structure and function) is a 

fundamental phenomenon of biological organisms. Several lines of investigation 

have led to the concept that there are two fundamental types of cell death: 

apoptosis and necrosis. The findings of our study demonstrated that the 

administration of APAP at  heptotoxic doses led to  the induction of cell death by 

both necrosis and apoptosis, with apoptotic cell death typically preceeding 

necrosis. Therefore, we analyzed the population of  apoptotic and necrotic cells in 

response to APAP by flow cytometry. The results shown in Figure 6 and Table 1 

indicate a protection against both types of cell death in response to APAP in 

PTP1B-/- hepatocytes as compared to wild-type cells. 

Effect of APAP treatment in the signaling pathways that modulate cell death 
and survival in wild-type and PTP1B-deficient hepatocytes.  

At the molecular level, we analyzed both stress-mediated and survival 

signaling in wild-type and PTP1B-/- hepatocytes upon APAP treatment. The c-Jun 

N-terminal Kinases (JNKs), a subfamily of the mitogen-activated protein (MAP) 

kinases, have been shown to be activated by phosphorylation at early time-periods 

after APAP treatment in hepatocytes (38-39). To analyze JNK activation in 

immortalized hepatocytes, cells were treated with different doses of APAP for 8 h 

and JNK phosphorylation was examined by Western blot analysis. As shown in 
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Figure 7A, APAP markedly increased the levels of phosphorylated JNK in wild-type 

hepatocytes. Interestingly, the lack of PTP1B prevented JNK activation in response 

to APAP. 

 

Figure 5.- PTP1B-deficient hepatocytes are protected against APAP-induced arrest in the S 
phase of the cell cycle. A. PTP1B+/+ and PTP1B-/- immortalized  hepatocytes were treated with 
various doses of APAP for 16 h. The percentage of S phase cell population was measured by flow 
cytometry.  B. Images of flow cytomerty showing the effect of APAP treatment on  G0/G1 and S 
phases in both PTP1B+/+ and PTP1B-/- immortalized  hepatocytes. *P<0.05, **P<0.01 and 
***P<0.005 PTP1B-/- vs. PTP1B+/+ cells (n=4 independent experiments). 

 

Table 1.-  Effect of APAP treatment in the induction of both apoptosis and necrosis in PTP1B+/+ 

PTP1B-/- hepatocytes. 

Population PI PI+* PI+dim** 

PTP1B
+/+

  C 99.5 10 10.8 

PTP1B
+/+

  0.5mM 98.5 22.7 24.1 

PTP1B
+/+

  1mM 98.7 23.1 24.6 

PTP1B
-/-

   C 99.9 4.5 3.9 

PTP1B
-/-

   0.5mM 99.5 7.2 5.7 

PTP1B
-/-

   1mM 99 10.2 6.7 
PI*=Necrosis. PI**=Apoptosis 
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Figure 6.- PTP1B-deficient hepatocytes are protected against APAP-induced apoptosis and 
necrosis. PTP1B+/+ and PTP1B-/- immortalized  hepatocytes were treated with various doses of 
APAP for 16 h. Apoptosis and necrosis was measured by PI staining by flow cytometry (n=4 
independent experiments). 

 

To study the effect of APAP on the survival signaling pathways, 

phosphorylation of the IGF-IR, levels of IRS1 and activation of Akt were examined. 

As depicted in Figure 7B, phosphorylation of the IGF-IR and its downstream target 

Akt decreased in APAP-treated wild-type hepatocytes at 8 h, but it was maintained 

along APAP treatment in PTP1B-deficient hepatocytes. These results  indicate that 

the protective effect of PTP1B deficiency also involve the increase in survival 

signaling. Interestingly, in PTP1B-deficient hepatocytes IRS1 degradation induced 

by APAP was attenuated. Alltogether these results suggest that the increased 

tyrosine phosphorylation of IGF-IR as a result of PTP1B deficiency elicits 

hepatoprotection in conjunction with the attenuation of stress-mediated signaling. 

Bcl-xL is a member of the Bcl-2 family with anti-apoptotic properties (40-

41). On that basis, we analyzed the expression of Bcl-xL after 8 h of APAP 

treatment in wild-type and PTP1B-/- hepatocytes. As shown in Figure 7C, wild-type 

cells showed a decrease in the expression of BclxL after APAP treatment whereas 

BCLxL expression was maintained in hepatocytes lacking PTP1B.  
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Figure 7.- Effect of PTP1B deficiency in stress and survival signaling in hepatocytes. PTP1B+/+ 
and PTP1B-/-   immortalized hepatocytes were treated with various doses of APAP for 8 h. Total cell 
lysates were analyzed by Western blot with the antibodies against phospho-JNK1/2 and JNK1/2 
(A), phosphor-IGFIR, IGFIR, IRS1, phospho-Akt and Akt (B) and  BclxL and β-actin as a loading 
control (C). Representative autoradiograms corresponding to three independent experiments are 
shown. D. PTP1B-/- immortalized hepatocytes were reconstituted  with PTP1B by retroviral gene 
transfer. PTP1B-/- and PTP1B-/-Rec cells were treated with various doses of APAP for 16 h. Total cell 
lysates were analyzed by Western blot with the indicated antibodies. Representative 
autoradiograms corresponding to three independent experiments are shown. 

 

Our next step was to study the effect of PTP1B reconstitution of PTP1B-

deficient hepatocytes in the signaling pathways modulated by APAP. For this goal, 

we reconstituted PTP1B expression in deficient cells by retroviral gene transfer as 

described in Materials and Methods. As a control, hepatocytes were infected with 

an empty retroviral construct. Figure 7D shows the re-expression of PTP1B in 

PTP1B-/- immortalized neonatal hepatocytes (refrerred as PTP1B-/- Rec). 

Importantly, re-expression of recombinant PTP1B in PTP1B-/- neonatal 

hepatocytes induced a decline of IGF-IR phosphorylation after APAP treatment 

similar to the effects observed in wild-type cells. In addition, APAP treatment 

activated JNK phosporylation in PTP1B-/- Rec neonatal hepatocytes as in wild-type 

cells. 

We have recently reported that APAP preotected against liver injury 

induced by a toxic dose of APAP (300 mg/kg) in mice (33). To reinforce this 

finding, we injected both PTP1B+/+ and PTP1B-/- mice with a higher dose of APAP 

(500 mg/kg) and analyzed liver toxicity. Serum ALT was higher in APAP-injected 

wild-type than in PTP1B-/- mice (Figure 8A). Moreover, less injury was observed in 
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liver sections from APAP-injected PTP1B-/- mice as compared to the wild-type 

controls that presented histological signs of severe hepatotoxicity (Figure 8B). 

PTP1B-deficient mice are protected against liver damage induced at a high 
dose of APAP.  

We next determined if reduced sensitivity of PTP1B-/- mice to APAP-

induced liver injury was associated with alterations in basal GSH levels in the two 

mose strains. Interestingly, the basal expression of Cyp2e1, GCL-C and GCL-M and 

basal GSH levels were comparable among both genotypes of mice (Figure 8C, 8D). 

 
Figure 8.- PTP1B-deficient mice are protected against liver damage induced by a high dose of 
APAP under similar GSH levels and expression of Cyp2e1, GCL-C, GCL-M and BclxL in the 
liver. PTP1B+/+ and PTP1B-/- mice were injected with 500 mg/kg APAP or saline for 6 h. A. ALT 

activity.
 **

P<0.01 PTP1B-/- vs. PTP1B+/+ mice (n= 6-8 mice of each condition).  B. Representative 
Hematoxylin & Eosin staining in liver sections. Bar scale 100 µm. C. Basal GSH levels in livers from 
PTP1B+/+ and PTP1B-/- mice. D. Whole cell lysates from both mice +were analyzed by Western blot 
with the indicated antibodies. Representative autoradiograms are shown. 

4. CONCLUSION  

In summary, the present study provides the first molecular evidence that 

levels of PTB1B modulate susceptibility to apoptosis that occurred at early time-

periods in hepatocytes treated with toxic doses of APAP. Thus, our results have 

revealed that PTP1B inhibition might be therapeutically of interest against the 

hepatotoxicity induced by overdoses of APAP. 
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