RADICALES LIBRES Y ANTIOXIDANTES

GUSTAVO BARJA DE QUIROGA
Departamento Biología Animal II.
Facultad de Biología
Universidad Complutense de Madrid

SUMARIO

1. LA TOXICIDAD DEL OXÍGENO
2. RADICALES LIBRES
3. FUENTES DE RADICALES LIBRES
4. PEROXIDACIÓN LIPÍDICA
5. DAÑO OXIDATIVO A PROTEÍNAS
6. DAÑO OXIDATIVO AL ADN
7. ANTIOXIDANTES
 7.1. Superóxido dismutasas
 7.2. Catalasas
 7.3. Glutation peroxidasas
 7.4. Glutation reductasas
 7.5. Regulación génica de las enzimas antioxidantes
 7.6. Ascorbato
 7.7. Glutation.
 7.8. Vitamina E
 7.9. Carotenoides
 7.10. Otros antioxidantes
8. CONCLUSION
9. BIBLIOGRAFIA
1. LA TOXICIDAD DEL OXÍGENO

Se suele admitir que los primeros experimentos controlados que demostraron el efecto tóxico del oxígeno sobre los organismos animales fueron realizados por Paul Bert a finales del siglo pasado. Sin embargo, Carl Wilhem Scheel ya describe por primera vez los efectos negativos del oxígeno sobre los seres vivos en 1777 (1). Esto ocurría sólo dos años después de que Scheel y Joseph Priestley (2) descubrieran a la vez e independientemente esta molécula. Desde el siglo pasado y durante los primeros seis decenios del presente se han ido acumulando datos descriptivos sobre la letalidad y las consecuencias patológicas de la exposición animal a altas presiones parciales de oxígeno. Así, se ha descrito que la toxicidad del O₂ es mayor cuanto más alta sea la tasa metabólica de la especie animal considerada. Esto tiene que ver probablemente con la alta letalidad de este gas en los homeotermos (como los mamíferos), y con el aumento de sensibilidad al oxígeno de los poiquilothermos conforme se eleva la temperatura.

En los mamíferos y en el hombre existen tres órganos especialmente sensibles in vivo. Si se trata a muchos mamíferos con oxígeno puro a tensiones normobáricas se produce la muerte en periodos tan cortos como 72 horas por daño al tejido pulmonar, uno de los expuestos a tensiones de oxígeno más altas en el organismo, acompañado en las etapas finales de edema y hemorragia (efecto Lorraine-Smith). La utilización de concentraciones menores de oxígeno (incluso inferiores al 50%) a presión normal, puede causar ceguera irreversible en niños prematuros por daño a la retina (fibroplasia retrolental). Si se suministra oxígeno puro, pero a presiones hiperbáricas (a más de 2-3 atmósferas), aparece una toxicidad aguda sobre el sistema nervioso (efecto Paul Bert) que se manifiesta con estados convulsivos que recuerdan a la epilepsia «de gran mal» y que pueden dar lugar a la muerte en horas o minutos según la dosis de exposición empleada. Hoy sabemos que el tejido nervioso es altamente sensible al oxígeno y su mayor resistencia in vivo en relación al pulmón se debe a su menor grado de hiperóxia tisular resultante de la saturación de la hemoglobina a presiones parciales del orden de sólo 100 mm de Hg.

A pesar de la gran acumulación de descripciones sobre los efectos nocivos del oxígeno a muchos niveles de observación, durante mucho tiempo se careció de teorías que pudiesen explicar su toxicidad. El primer mecanismo general propuesto consistió en suponer que el oxígeno inactivaba enzimas que presentaban grupos
tiolícios esenciales en su forma reducida, -SH, (3). Aunque este mecanismo se ha demostrado experimentalmente para algunas enzimas como la nitrogenasa bacteriana, la glutamato descarboxilasa de cerebro de pollo, o la enzima glucolítica gliceroldehído-3-fosfato-descarboxilasa (4), está claro hoy en día que no puede explicar más que una pequeña parte de los procesos celulares alterados por el oxígeno. No deja de ser interesante, sin embargo, que uno de los principales sistemas protectores frente a este tipo de inactivación sea el tripeptídeo glutation, una sustancia importante en la defensa frente a los radicales libres.

2. RADICALES LIBRES

Hoy sabemos que la mayor parte del daño oxidativo en los sistemas biológicos se debe a que la utilización del oxígeno por las células da lugar a la generación de radicales libres. Un radical libre es una molécula o átomo que posee un electrón desapareado en su orbital más externo. La teoría de la toxicidad del oxígeno por radicales libres fue propuesta por primera vez por la investigadora argentina Rebeca Gershman en 1954 (5) como consecuencia de sus experimentos con O2 hiperbárico y de las observaciones previas de Ozorio de Almeida sobre la similitud de las alteraciones histológicas producidas por el oxígeno hiperbárico y por las radiaciones, ya que se sabía que estas últimas dañan en gran medida a través de la generación de radicales libres. Rebeca tuvo también la habilidad de unir a estas observaciones con el concepto clásico expuesto por Michaelis en 1940 «toda oxidación (o reducción) solo puede producirse en pasos de oxidaciones (o reducciones) de carácter univalente» (6), que fue desechado debido a gran medida a la oposición y autoridad de Otto Warburg, quien defendía el carácter tetravalente de las oxidaciones biológicas con el que hoy sabemos que se da a nivel de la citocromo oxidasa mitocondrial. La teoría no recibió sin embargo un impulso definitivo hasta el descubrimiento de la superóxido dismutasa en 1969 por Joe McCord e Irving Fridovich (7), lo que ponía de manifiesto la existencia y relevancia de un radical libre (el superóxido) en las células aerobias.

La vía univalente de reducción del oxígeno (Fig. 1) da lugar a tres formas «incompletely reducidas» del oxígeno entre éste y el agua, el radical superóxido (O2·−), el peróxido de hidrógeno (H2O2), que no es un radical pero puede generarlos y el radical hidroxilo (OH·). El radical superóxido, contrariamente a puntos de vista previos, carece de reactividad suficiente para atacar directamente a las macromoléculas. Sin embargo, en presencia de trazas de catalizadores metálicos como el hierro o el cobre, la combinación del O2·− y el H2O2 en la reacción de Fenton o Haber-Weiss da lugar a OH· (Fig. 2). El verdadero papel del O2·− en esta reacción es el de actuar como reductor del hierro. Como se observa, el O2·− necesita al H2O2 para poder producir la especie oxidante (OH·), mientras que el H2O2 no necesita al O2·− para poder hacerlo. Esto, junto con la presencia del H2O2 en las células a concentraciones muy superiores a las del O2·−, convierte al peróxido de hidrógeno en una especie con gran capacidad de generar daño oxidativo a pesar de no ser un
O2, VIA UNIVALENTE

Figura 1. En la vía univalente de reducción del oxígeno se forman especies activas incompletamente reducidas por adición secuencial de electrones de uno en uno en el siguiente orden: radical superóxido (O_2^-), peróxido de hidrógeno (H_2O_2) y radical hidroxilo (OH$^-\,$). En cambio, la adición de cuatro electrones al oxígeno, como ocurre en la citocromo oxidasa mitocondrial (COX), permite su reducción a agua sin que se liberen radicales de oxígeno.

HABER-WEISS, FENTON

Figura 2. En la reacción de Haber-Weiss o de Fenton, el superóxido reduce el hierro férrico a ferroso, y éste reduce monoelectronicamente al peróxido de hidrógeno, dando lugar a la formación del radical hidroxilo, altamente reactivo. El hierro no se consume en el proceso, actuando como catalizador del mismo. El cobre puede substituir al hierro oscilando entre las valencias +2 y +1.
radical libre. El OH es considerado hoy el principal iniciador del ataque a todo tipo de macromoléculas, aunque existen otros iniciadores propuestos. Esta substancia sin carga neta es una de las especies más reactivas presentes en el organismo. Su electrón desaparecido puede reaccionar inespecíficamente con casi cualquier tipo de molécula a 2-3 diámetros moleculares de su lugar de formación. La alta reactividad del OH impide su difusión a largas distancias a través de la célula, papel que le correspondería al H₂O₂. Este último sería, por tanto, también responsable de la propagación del daño oxidativo entre fracciones subcelulares. Se ha demostrado generación de O₂⁻ y H₂O₂ por parte de enzimas y mediante la autooxidación de moléculas biológicas en casi todas las fracciones celulares incluyendo la citósólica, mitocondrial, peroxisómica, microsómica así como en las membranas plasmática y nuclear. La presencia simultánea de estas dos substancias (o sólo de H₂O₂) puede generar OH en la mayoría de los rincones celulares. La necesidad de la presencia de metales de transición en la reacción de Fenton convierte al hiebro y al cobre (los más abundantes en los sistemas biológicos) en agentes esenciales como catalizadores del daño oxidativo.

Por otra parte, si al oxígeno basal (forma triplete), que es un biradical con espines paralelos, se le suministra energía suficiente, uno de sus dos electrones desaparecidos sufre una inversión de espin quedando ambos antiparalelos, lo que le confiere una gran reactividad (oxígeno singlete). Las reacciones oxidativas en las que interviene el oxígeno singlete se manifiestan y son cuantificables por la emisión espontánea de quimioluminiscencia de baja intensidad en todo tipo de células. La mayoría de los autores han dejado de considerar al singlete como iniciador biológico del daño oxidativo. De todas formas, uno de los mejores marcadores del singlete es la emisión de quimioluminiscencia. Dicha emisión es la base de métodos de medida del estrés oxidativo de máxima sensibilidad, aunque presentan la desventaja de no poseer especificidad en cuanto a la especie emisora.

3. FUENTES DE RADICALES LIBRES

En los tejidos sanos la fuente principal de radicales libres son las mitocondrias. Esto se debe a que estos orgánulos son responsables de más del 90% del consumo de oxígeno celular y a que los radicales libres en los sistemas biológicos proceden siempre, en último término, del metabolismo del oxígeno por la vía univalente. De los cuatro Complejos responsables del transporte electrónico en la cadena respiratoria, se ha observado producción de radicales libres en mitocondrias aisladas en el Complejo I (8) y en el Complejo III (9). En el caso del Complejo I, los candidatos más probables como generadores de radicales libres parecen ser los centros hierro-sulfurados (10), mientras que en el caso del complejo III se ha debatido intensamente sobre si podrían corresponder a la semiquinona (9) o al citocromo b (11). Entre las posibles consecuencias de esta producción mitocondrial de radicales libres se encuentran enfermedades como el Parkinson (12) o el mismo proceso del envejecimiento (13), durante el cual se sabe que el daño oxidativo al ADN mito-
condrial es mucho más acusado que en el núcleo, y parece acumularse exponencialmente con la edad (14). Esto podría contribuir a la acumulación de delecciones y mutaciones que se da en los tejidos post-mitóticos de este ADN en los individuos viejos.

Cuantitativamente, la segunda fuente principal de radicales libres son los fagocitosis del sistema inmune. Al encontrarse con un agente infeccioso, las células polimorfonucleares y los macrófagos experimentan un aumento muy acusado de su consumo de oxígeno llamado «estallido respiratorio». Dicho consumo ocurre principalmente en la membrana plasmática donde un complejo enzimático, la NADPH oxidasa, se activa y produce radicales de oxígeno a partir de oxígeno basal y electrones derivados de la vía de las pentosas (15-17). Estos radicales libres contribuyen de forma acusada a la destrucción o inactivación del agente infeccioso de modo directo, o por combinación con halógenos como el cloro para generar agentes extremadamente reactivos como el hipoclorito o las monoclóraminas. El complejo NADPH oxidasa está compuesto, al menos, por una flavoproteína y un citocromo b heterodimérico de membrana, a los que se les suman dos proteínas citósólicas (p67 y p47) durante la activación del complejo. En dicha activación intervienen fosfolipasas C y D reguladas por proteínas G, y el mecanismo intracelular incluye aumentos de concentración de calcio y fosforilación de las proteínas p67 y p47, procesos que parecen estar modulados por GTP y magnesio. La importancia de la generación de radicales libres en la defensa frente a las infecciones se pone de manifiesto en la enfermedad crónica granulomatosa en el hombre, en la que se produce una deficiencia congénita de NADPH oxidasa que da lugar a infecciones recurrentes por bacterias y hongos y a la muerte entre la infancia y la madurez. Aunque la producción de radicales libres por los fagocitos es útil para el organismo, en muchos procesos patológicos se produce infiltración secundaria de estas células del sistema inmune en los órganos afectados. De este modo, se ha propuesto que el daño oxidativo durante la hiperóxia, el síndrome de isquemia-reperfusión, el ejercicio, la endotoxina en el choque séptico, la esclerosis múltiple, el humo del tabaco, las fibras de asbestos u otros procesos puede deberse, en parte, a la producción excesiva de radicales libres por las células fagocíticas. También se sabe que la inflamación crónica está asociada con el aumento de la frecuencia de muchos tipos de cánceres. Esto podría deberse al daño prolongado producido por las células fagocíticas en el material genético del tejido inflamado, que podría dar lugar a los procesos de iniciación y/o promoción tumoral y a su fijación mediante mitosis (18).

Otro papel relevante de los radicales libres en relación con los procesos patológicos es su producción durante el síndrome de isquemia-reperfusión. La comprensión de este fenómeno es primordial, ya que la isquemia cerebral y de miocardio es la principal causa de muerte en las sociedades avanzadas. El daño irreversible durante la isquemia se debe fundamentalmente a la falta de oxígeno, que da lugar a caída de la concentración de ATP, degradación de AMP y acumulación de hipoxantina, a la vez que se estimula la glucolisis anaerobia con la consiguiente
acidificación del tejido. La reperfusión a tiempo es esencial para evitar la necrosis tisular. Sin embargo, se sabe que durante la reperfusión se produce un daño adicional debido a la producción de radicales de oxígeno. La hipótesis clásica para explicarlo (19) consiste en la conversión de la enzima xantina dehidrogenasa a la forma xantina oxidasa durante la isquemia. Al llegar la reoxigenación, estando presentes tanto la enzima como su substrato, se produce la conversión de la hipoxantina en xantina y ácido úrico. Los electrones liberados por la hipoxantina no pasan al NAD como ocurre con la forma dehidrogenasa de la enzima, ya que la forma oxidada oxidase los cede al oxígeno molecular, formando radicales libres. Otro mecanismo alternativo consiste en el aumento del grado de reducción de los transportadores de electrones de la cadena mitocondrial durante la isquemia hasta valores cercanos al 100%, debido a la falta de aceptor natural, el oxígeno. Al aparecer súbitamente el oxígeno durante la reperfusión, dichos electrones son fácilmente cedidos al mismo a partir de dicha cadena, aumentando de forma acusada la generación de radicales libres. Se ha propuesto también la intervención de los fagocitos durante el síndrome de isquemia-reperfusión. Los radicales libres también están implicados en la oxidación de las lipoproteínas de baja densidad (LDL), lo que es esencial para su fagocitosis por macrófagos que los convierte en células espumosas. Dichas células intervienen en la formación de la placa arteriosclerótica en las paredes de los vasos sanguíneos, un proceso básico que estimula la aparición de las enfermedades cardiovasculares.

Muchos de los procesos anteriores relacionan a los radicales libres con procesos dañinos para el organismo. De todos modos, cuando sus niveles se controlan adecuadamente, los radicales libres también intervienen en procesos útiles para el individuo. Esto es quizás lo que ha impedido su eliminación en el curso de la evolución, según se ha revisado recientemente (20). Dichos usos útiles incluyen procesos muy variados como la defensa frente a la infección, la destoxicificación de xenobióticos, la reducción de ribonucleósidos, las acciones de hidroxilasas y dioxygenasas, la carboxilación del glutámico, la señalización celular por óxido nítrico (un radical libre), la detección de la pO₂ en el cuerpo carotídeo, la transducción intracelular de señales a través de factor nuclear kappa-B y los productos genómicos c-fos y c-jun, la modulación de segundos mensajeros como el GMP cíclico, las acciones de prostaglandinas y leucotrienos, la agregación plaquetaria, la coagulación sanguínea, el potencial de membrana, la elevación antipolipérmica de la membrana de fecundación, la defensa interindividual en los insectos, o la bioluminiscencia (21-34). Se ha descrito también un papel para los radicales libres durante la generación de calor mediante termogénesis sin escalofrío (35).

4. PEROXIDACION LIPIDICA

Todo proceso de peroxidación de macromoléculas ocurre en tres etapas bien definidas: iniciación, propagación y terminación. En el caso más conocido y quizás más importante desde el punto de vista de la toxicidad aguda —la peroxidación lipídica— la iniciación consiste en la extracción de un electrón de un carbono
contigo a un doble enlace por parte de un iniciador como el OH (Fig. 3). De entre todas las macromoléculas presentes en los tejidos animales, los ácidos grasos polinsaturados son los más sensibles al ataque por radicales libres debido a la poseción de dobles enlaces. Se forma así un radical alquil (L) que se convierte en peroxíl (LOO) por adición de oxígeno y que en varias reacciones, como su reducción a hidroperóxido (LOOH), puede dar lugar a propagación de la peroxidación al generar otro radical alquil (L) en el ácido graso contiguo en la membrana. La propagación explica el carácter de reacción en cadena de la peroxidación lipídica, mediante la cual una sola iniciación puede dañar un gran número de moléculas. La reacción se termina por la reacción de radicales (por ejemplo de tipo alquil) contiguos, dando lugar a puentes cruzados (L-L), o mediante la fragmentación del ácido graso en gran número de productos como el malondialdehído (el marcador más ampliamente utilizado), el 4-hidroxinonenal o alcanos que aparecen en el aire espirado (base del único método de medida no invasivo). Aunque estos procesos se han estudiado fundamentalmente con ácidos grasos insaturados y sus ésteres, parecen darse procesos análogos con otros lípidos como los esteroides. Los productos de los lípidos autooxidados son normalmente muy complejos porque se pueden

![Diagrama de peroxidación lipídica](image)

Figura 3. Esquema resumen de las reacciones principales de la peroxidación lipídica. LH = lipido intacto; L = radical lipídico alquil; LOO = radical lipídico peroxíl; LOOH = hidroperóxido lipídico; LO = radical lipídico alcóxil; LOH = hidróxido lipídico (estable).
formar muchas substancias distintas con solo unas pocas reacciones básicas de propagación. Además, los productos de la autoxidación, los hidroperóxidos y los peróxidos cíclicos, son a su vez especies muy reactivas, lo que da lugar a la formación de productos secundarios. Parte de las investigaciones más recientes están enfocadas a aclarar la peroxidación en sistemas agregados como las LDL. En estos modelos se sabe que tanto el tamaño de partícula como la presencia de tocoferoles puede tener una importancia capital para la cinética de la autoxidación (36).

El hierro es un estimulador de la peroxidación lipídica, pudiendo participar en las reacciones de iniciación o propagación. De acuerdo con esto, la desferroxiamina es un potente inhibidor de la peroxidación lipídica estimulada por hierro. La peroxidación lipídica inducida por hierro se estimula mediante bajas concentraciones de un reductor como el ascorbato (peroxidación no enzimática), o tiene lugar con la participación de NADPH como reductor y de cadenas de transporte electrónico como la microsomal (peroxidación enzimática). La peroxidación lipídica puede también ser estimulada por el oxígeno singlete, el ozono, o radicales halógenos. Se suelen utilizar muchas técnicas para estimar la peroxidación lipídica, como el consumo de oxígeno, la valoración de peróxidos mediante yodo o enzimas, valorando dienos conjugados, la producción de hidrocarburos volátiles en el aire expirado, la pérdida de ácidos grasos insaturados, la producción de quimioluminiscencia, la acumulación de pigmentos fluoroscientes, la valoración de aldehídos o malonaldehído mediante el test del ácido tiobarbitúrico. Todos estos métodos son perfectamente válidos en modelos de peroxidación estimulada \textit{in vitro}, pero tienen problemas de interferencia con substancias no relacionadas con la peroxidación lipídica cuando se aplican a materiales biológicos \textit{in vivo}. Recientemente se ha puesto en marcha la que parece ser la única técnica disponible con suficiente sensibilidad y especificidad para estudios \textit{in vivo}: la medida de hidroperóxidos de fosfolípidos por detección quimioluminiscente post-columna tras separación mediante cromatografía líquida de alto rendimiento-HPLC (37,38).

5. DAÑO OXIDATIVO A PROTEINAS

Aunque se ha dedicado mucha más atención a la peroxidación lipídica, hoy sabemos que también se producen ataques similares por parte de radicales libres a proteínas o ácidos nucléicos. Los productos de estas oxidaciones se acumulan en proporciones menores, lo que ha dado lugar a que hayan pasado desapercibidos durante largo tiempo. Sin embargo estos procesos pueden ser de extrema importancia por el carácter cualitativo del daño o por la mayor dificultad de reparación del mismo, como puede ocurrir en el caso del ADN. Las proteínas pueden ser atacadas incluso a nivel de estructura primaria, y algunos grupos han mostrado que la oxidación en residuos de aminoácidos discretos sirve de marcador para sistemas proteolíticos no dependientes de ATP, para los que se han propuesto nombres como el de macroxiproteínasa, que habrían sido especialmente diseñados en la evolución para eliminar proteínas oxidadas (39).
Muchos estudios, entre los que destacan los liderados por el grupo de Stadtman, han dado lugar a la conclusión de que el H₂O₂ y las formas reducidas del hierro y el cobre, generados por oxidasas de función mixta, interaccionan en los sitios de unión de estos metales a las proteínas, produciendo radicales libres que oxidan inmediatamente a los residuos de aminoácidos vecinos. Este proceso se considera pues específico del sitio de unión del metal. En muchas enzimas este sitio de unión de metales puede ser el centro activo. Entre los aminoácidos más sensibles al daño oxidativo en las proteínas se encuentran la histidina, la prolina, la arginina, la lisina y la cisteína. Como consecuencia se forman grupos carbonilo, o se producen conversiones de unos aminoácidos en otros, como ocurre con la transformación de histidina en asparragina. Los grupos carbonilo aparecen en varios sistemas de oxidación in vitro, como los relacionados con el citocromo P-450, los sistemas metal/ascorbato, o los que utilizan xantina oxidasa. Según Stadtman y colaboradores, el contenido en carbonilos aumenta durante el envejecimiento en roedores y humanos (40). La medida del daño oxidativo a proteínas en muestras biológicas se suele realizar mediante la valoración de grupos carbonilos por barrido espectrofotométrico o mediante isótopos. Estas técnicas son suficientemente sensibles pero no están libres de interferencias. Los intentos de desarrollar métodos más específicos por HPLC no han rendido, hasta el momento, resultados suficientemente satisfactorios.

6. DAÑO OXIDATIVO AL ADN

Los radicales libres reaccionan con los componentes del ADN mediante adición o abstracción. En presencia de oxígeno, se forman radicales peroxílicos por adición del mismo a las bases o al azúcar del ADN. Las reacciones posteriores de los radicales formados en el ADN dan lugar a un gran número de productos. También se forman puentes cruzados ADN-proteína. Muchos de estos productos encontrados in vitro también aparecen en el ADN de tejidos animales tras el tratamiento con substancias que estimulan la generación de radicales libres. Según los estudios liderados por Bruce Ames (18), el daño oxidativo al ADN y la mitogénesis son dos causas importantes del cáncer. En los mamíferos, las altas tasas metabólicas y la longevidad corta están asociadas con una alta frecuencia de daño oxidativo al ADN y con una alta frecuencia de cánceres, y lo inverso ocurre en animales como el hombre con baja tasa metabólica y alta longevidad. Incluso en los humanos se ha calculado que se producen como media 10.000 impactos de daño oxidativo al ADN de origen endógeno por día (41), una cantidad cientos de miles de veces superior a la causada por la radiación natural de fondo.

El número de productos del ataque a las bases del ADN por radicales libres supera la veintena. Uno de los primeros en valorarse por HPLC con detección ultravioleta fue la timina glicol. La baja sensibilidad de este tipo de detección ha dado lugar en los últimos años a la valoración de gran número de productos por cromatografía de gases-espectrometría de masas, o de la 8-hidroxideoxiguanosina (8-OHdG) por HPLC con detección electroquímica. La primera técnica permite la
valoración simultánea de muchos productos, mientras que la segunda sólo valora uno. Además, la detección de masas permite una identificación inequívoca, mientras que en el caso de la HPLC-EC ésta se basa solo en el tiempo de retención en la columna. Sin embargo, recientemente ha quedado claro que los valores mucho más altos (hasta un orden de magnitud) obtenidos con la detección de masas se deben a artefactos generados durante la manipulación (imprescindible) de las muestras. Por eso, parece que la técnica de preferencia sería la de HPLC con detección electroquímica (EC), aunque algunos autores no descartan que en este caso se subestime, en lugar de sobreestimarse, el nivel de daño oxidativo al ADN.

Al menos en el caso del ADN nuclear se cree que el hierro juega de nuevo un papel importante en el daño oxidativo, al ser uno de los contrainda de la macromolécula. Si el H₂O₂ llega al núcleo, reacciona con el hierro ferroso, generando radical hidroxilo que ataca en ese mismo lugar al azúcar o a la base, produciendo roturas de la hebra y modificaciones en las bases. Estas lesiones pueden dar lugar a mutaciones y a fenómenos carcinogénicos. Esto explicaría la asociación epidemiológica positiva entre los depósitos de hierro y el riesgo de cáncer. Otros autores piensan que el cobre puede también cumplir un papel similar a del hierro en la mediación del daño oxidativo al ADN nuclear.

El daño oxidativo al ADN mitocondrial es unas 15 veces superior al del ADN nuclear (42). Esto se debe, sobre todo, a la cercanía de dicho ADN al lugar principal de generación de radicales libres en la célula sana, la cadena de transporte electrónico mitocondrial. Además, el ADN mitocondrial en el hombre está tan «empaquetado» que todo el código. También carece de histonas y poliaminas que puedan protegerlo y su capacidad de reparación es mínima en relación con la del ADN nuclear. Como consecuencia de todo esto, las delecciones y mutaciones del ADN mitocondrial son también mayores que en el ADN nuclear. Además, el daño oxidativo y las delecciones del ADN mitocondrial aumentan exponencialmente con la edad en el corazón humano (43). Este y otros hechos han llevado a pensar que el daño oxidativo al ADN mitocondrial juega un papel determinante en el envejecimiento (44).

De todas formas, la mayor parte de los genes se encuentran en el núcleo, no en la mitocondria. Es interesante resaltar que se ha descrito también un aumento de la 8-OHdG con la edad en varios tejidos de rata (41), aunque el hallazgo no es compartido por todos los autores (45). Pero es especialmente importante que los niveles de 8-OHdG en el ADN nuclear son tanto menores cuanto mayor es la longevidad máxima de la especie animal, mostrando el hombre los niveles mínimos de todos los mamíferos estudiados hasta la fecha, que son menos longevos que él (46, 47). Esto es lo que cabría esperar si una baja producción mitocondrial de radicales libres da lugar a un menor daño oxidativo al ADN (44), molécula sobre la que hay acuerdo generalizado en su importancia capital para el envejecimiento. El problema actual es la falta de conocimiento acerca del mecanismo por el cual el daño oxidativo se transmite desde las mitocondrias hasta el núcleo, dando lugar a una menor
alteración en el ADN nuclear en las especies longevas. Se ha propuesto una posibilidad para explicarlo (48), pero hasta ahora no hay resultados experimentales que la hayan puesto a prueba. La idea más popular de que el daño oxidativo mitocondrial daría lugar a una crisis energética por déficit en la producción de ATP y fracaso subsiguiente en la homeostasis celular en innumerables procesos dependientes de energía, parece ser contradicha por trabajos experimentales que indican que la respiración y la fosforilación oxidativa continúan intactas en las mitocondrias de individuos viejos (49). En cualquier caso, se sabe que en la membrana nuclear existe también una cadena de transporte electrónico de función fisiológica incierta que también genera radicales libres, aunque de modo mucho menos intenso que en las mitocondrias. Debido a la ausencia de métodos adecuados, aún no es posible saber cuál es su contribución relativa al daño oxidativo total del ADN. La información disponible sugiere, sin embargo, que las especies animales con longevidades elevadas poseen una baja intensidad de generación de radicales libres y/o una alta actividad de reparación de su ADN (44).

7. ANTIOXIDANTES

Los datos presentados en las secciones anteriores muestran que siempre existe un cierto nivel de daño oxidativo, lo cual supone que una fracción de los radicales libres generados en el organismo son capaces de alcanzar sus dianas moleculares antes de que puedan ser eliminados por mecanismos antioxidantes. Sin embargo, la mayor parte de los radicales libres al menos en muchas partes de la célula son eliminados mediante antioxidantes. De hecho, el mantenimiento de la homeostasis redox del tejido solo es posible mediante un equilibrio entre la intensidad de generación y la intensidad de eliminación de radicales libres. Este equilibrio en el tejido solo es posible mediante un equilibrio entre la intensidad de generación y la intensidad de eliminación de radicales libres. Este equilibrio se puede dar con altos niveles de generación y destrucción o viceversa, como ocurre en las distintas especies animales (44). También puede darse dentro de la misma especie en distintas condiciones. Así, cuando aumenta la producción de radicales libres, debido a causas exógenas —o endógenas como puede ocurrir en el ejercicio o el hipermetabolismo— se puede dar una regulación compensadora a la alza en las defensas antioxidantes. Cuando este equilibrio entre generación y destrucción de radicales libres se altera, la célula entra en un proceso degradativo patológico. De aquí la importancia del estudio de los distintos sistemas antioxidantes celulares.

7.1. Superóxido dismutasas

Las superóxido dismutasas (SOD) son enzimas que eliminan el radical superóxido. Durante la reacción una molécula de superóxido se oxida hasta O₂ molecular, mientras que la otra se reduce a H₂O₂. Por tanto, más que eliminar formas activas del oxígeno, esta enzima transforma una (el superóxido) en la otra (el H₂O₂). Esto probablemente explica resultados aparentemente paradójicos, en los que un exceso de enzima puede llevar al individuo a una situación deletérea. Esto se ha
visto en animales o células transgénicas con aumento del número de copias del gen de la SOD y se ha propuesto que podría estar implicado en el síndrome de Down, ya que el gen de la SOD citoplásica se encuentra en el cromosoma 21 en el hombre. La enzima citoplasmática fue descubierta por Joe McCord e Irwin Fridovich en 1969 (7), lo que supuso un impulso definitivo para el desarrollo de la investigación biomédica sobre radicales libres.

La constante de velocidad de la reacción catalizada por la SOD es del orden de 2 x 10^6 M^-1 s^-1, lo que hace que casi esté limitada únicamente por la difusión. Existen dos formas moleculares en los animales: la SOD Cu-Zn (el átomo de Cu es el que realiza directamente la dismutación) abunda en el citoplasma, es dimérica y tiene un peso molecular bajo (30 kDa); la SOD Mn (el átomo de manganeso realiza la dismutación) abunda en las mitocondrias, es tetramérica y tiene un peso molecular mayor (80 kDa). La SOD Cu-Zn se inhibe en presencia de cianuro o de dietilditiocarbamato (DDC), mientras que la SOD-Mn no resulta inhibida. Esto se suele aprovechar para medir las dos formas en homogeneizados celulares. Sin embargo, la interacción del cianuro o el DDC con el sistema generador o detector de O_2^-, junto con la frecuencia inhibición incompleta de la SOD-Cu-Zn y la gran desproporción de las dos formas (del orden de 9:1) en tejidos como el hígado dificulta la obtención de resultados fiables con este tipo de métodos. En las procariotas existen SOD con número variable de subunidades y con Fe, Mn o ambos como metal. La secuencia de aminoácidos de la SOD de procariotas guarda homología con la SOD-Mn de los animales pero no con la SOD Cu-Zn, lo que está de acuerdo con la hipótesis del origen simbiótico de las mitocondrias. Se ha descrito otra SOD-Cu-Zn dimérica, presente en líquidos extracelulares como el plasma, la linfa o el líquido sinovial, que podría ser de especial relevancia en el control de las reacciones inflamatorias. El marcado inmunofluorescente con anticuerpos monoclonales sugiere que la SOD Cu-Zn es predominantemente peroxisómica, al menos en fibroblastos humanos y en células de tumores hepáticos. Su localización citosólica podría deberse a la rotura de los peroxisomas durante la homogeneización (50).

7.2. Catalasas

Las catalasas catalizan dos tipos de reacciones. En la reacción catalítica se produce la dismutación de dos moléculas de peróxido de hidrógeno. Una se oxida a oxígeno y la otra se reduce a dos moléculas de agua. En la reacción peroxidativa se utiliza un substrato inespecífico como reductor para transformar una sola molécula de peróxido de hidrógeno en dos de agua. Es decir, en este caso la enzima actúa como una peroxidasa. La enzima tiene una K_M y una V_max muy altas por el H_2O_2, lo que la convierte en principio en más adecuada para eliminar el H_2O_2 celular cuando su concentración sube mucho. Es una de las enzimas más activas que se conocen, exhibiendo una actividad molecular de 5.600.000 moléculas de peróxido de hidrógeno por minuto por molécula de enzima. Abunda en los peroxisomas en animales como la rata, pero en otras especies como el cobayo hay datos
que apoyan su presencia en el citosol. Su peso molecular es muy alto (240 kDa) y es una hemoenzyma tetramérica en la que el átomo de Fe realiza el intercambio redox.

7.3. Glutation peroxidasas

Las glutation peroxidasas (GPx) eliminan hidroperóxidos utilizando GSH (glutation reducido) como reductor. Esta actividad fue descubierta por Mills en la década de los cincuenta. Una forma enzimática es dependiente de Se, elemento que es esencial para su actividad y controla la síntesis de la proteína, es tetramérica y tiene entre 76 y 105 kDa. Elimina tanto hidroperóxidos orgánicos (ROOH) como inorgánicos (H₂O₂). La otra forma no contiene selenio, tiene un peso molecular menor, es dimérica (al menos en algunas de sus formas) y sólo es capaz de eliminar ROOH. En rata se ha demostrado que esta segunda forma corresponde a las mismas moléculas que las glutation transferasas (que intervienen en la destoxicificación de xenobióticos) con subunidades Y₆ o Y₇.

Las GPx están presentes en el citosol y en las mitocondrias (principalmente GPx-Se en este último caso). Su Kₘ y Vₘₐₓ por el H₂O₂ son bajas, lo que las hace idóneas para eliminar concentraciones pequeñas de H₂O₂ y complementarias respecto a la catalasa. No pueden trabajar en la fracción lipídica, por lo que eliminarían los ROOH lipídicos, reduciéndolos a sus formas estables (ROH), sólo tras la liberación previa del ácido graso peroxidado desde la membrana al citosol por parte de fosfolipasas. El grupo de Ursini ha caracterizado recientemente, sin embargo, otra GPx dependiente de Se que trabajará directamente en la fracción lipídica. Esta GPx de hidroperóxidos de fosfolípidos (PH-GPx) se distribuye en muchos tejidos, es más resistente a la deficiencia en selenio y requiere más selenio para mostrar toda su actividad (51). Existen otras GPx en el plasma antigénicamente diferentes de las citosólicas. Son glucoproteínas, con un Mₙ de 22.500 según la determinación por electroforesis en geles de poliacrilamida en presencia de SDS y podrían proceder del riñón (52).

7.4. Glutation reductasas

Las glutation reductasas reducen una molécula de glutation oxidado (GSSG) a dos de GSH a expensas de equivalentes de reducción en forma de NADPH. Puesto que el pool de GSH celular es limitado y la elevación de la tasa GSSG/GSH es altamente tóxica para la célula, esta enzima es de vital importancia para el funcionamiento de la eliminación de H₂O₂ por la vía de la GPx, así como para la reconstitución del GSH oxidado no enzimáticamente. Las GSH reductasas presentan FAD unido a la enzima, que es esencial al actuar como coenzima. Están presentes en el citosol y en las mitocondrias. Puesto que la glutation reductasa precisa a su vez de NADPH como fuente de equivalentes de reducción, las enzimas de la vía de las
pentosas glucosa-6-fosfato-deshidrogenasa y 6-fosfogluconato deshidrogenasa (productoras citosólicas de NADPH) constituyen una segunda línea de defensa antioxidante.

7.5. Regulación génica de las enzimas antioxidantes

Las concentraciones de enzimas antioxidantes en las células están sujetas a regulación génica, de forma que aumentan rápidamente en respuesta a factores de transcripción que detectan cambios en el nivel de estrés oxidativo (53). Durante la evolución han aparecido equipos específicos de genes con promotores especialmente diseñados para este propósito. La exposición de *E. coli* y *S. typhimurium* al H₂O₂ induce hasta 30 proteínas detectadas por electroforesis bidimensional en geles de poliacrilamida. Algunas se han identificado y se solapan con las inducidas por choque térmico u otras formas de estrés oxidativo. La inducción está controlada por una proteína OxyR que se une al ADN al oxidarse en presencia de peróxido de hidrógeno. El *locus* génico que regula estas proteínas de estrés se denomina *oxyR* y controla a la catalasa, la GSH reductasa, y la alquilhidroperoxidasa. Otro *locus* génico diferente, llamado regulón *soxR* (que responde a superóxido), controla nuevo proteínas incluyendo a la SOD-Mn, la glucosa-6-fosfato deshidrogenasa, la endonucleasa IV (implicada en la reparación del ADN), así como proteínas ribosómicas (56) o de membrana (OmpF). El *locus* está formado por los genes *soxR* y *soxS*, separados sólo por 85 pares de bases. El sistema también responde a agentes que generan radicales libres por ciclos redox (como el paraquat), o a descensos en los niveles de NAD(P)H celular. En los eucariotas los mecanismos de regulación se conocen mucho menos, aunque parecen jugar un papel importante los propios cofactores metálicos de las enzimas antioxidantes Cu, Fe, Mn y Se. Varias hormonas y citocinas también parecen tener un papel en los animales. Así, el factor de necrosis tumoral (TNF) y algunas interleucinas inducen la SOD en el pulmón de rata (54) y aumentan la expresión de la catalasa, la GPx y la GSH reductasa. Las actividades de la SOD y de la catalasa también aumentan en el riñón o el pulmón de roedores tras el tratamiento con estrógenos o dexametasona (55).

7.6. Ascorbato

Los antioxidantes de bajo peso molecular son también muy importantes para la homeostasis redox. La idea de que el ácido ascórbico es un reductor importante en el organismo fue introducida por primera vez por Szent-Györgyi en 1928 (56) y el concepto de su enorme importancia para la salud humana fue enfatizado durante varias décadas por otro premio Nobel, Linus Pauling. Esta substancia, que sólo es una vitamina (Vit. C) en muy pocos animales como el hombre o el cobayo, puede existir en tres estados redox: ácido ascórbico (reducido), radical semidehidroascorbato (AGR; tras la oxidación monoelectrónica del ácido ascórbico) y dehidroascorbato (DHA; tras la oxidación bielelectrónica del ácido ascórbico). Puede eliminar el O₂⁻, el OH o el H₂O₂ y también extinguir singlete (57). El DHA, aunque muy inestable, puede ser
reducido de nuevo a ascorbato a partir de equivalentes de reducción del NADPH mediante la catálisis por una DHA reductasa (58) o por enzimas dependientes de GSH que corresponderían (59) o no (60) a tioltransferasas. También se ha descrito recientemente una AFR reductasa en la membrana plasmática que reduce AFR extracelular a partir de NADH (61). La medida de la razón DHA/ascorbato puede constituir un buen estimator del estrés oxidativo celular (62).

Se sabe que niveles apropiados de ascorbato en la dieta, mucho mayores que los necesarios para evitar el escorbuto, reducen drásticamente el daño oxidativo in vivo a lípidos y proteínas en animales como el cobayo que, igual que el hombre, no pueden sintetizar este antioxidante (63). Una revisión reciente indica que los niveles de ascorbato disminuyen de forma consistente con la edad en el hombre y que este efecto no se debe a un descenso en su ingesta (63). Además, los niveles tienden a ser inferiores en varones que en mujeres (63). El posible papel protector del ascorbato y otros antioxidantes naturales en la dieta frente al desarrollo de cánceres (64), enfermedades cardiovasculares (65), cataratas (66) y otras enfermedades degenerativas (63) se basa, en gran medida, en estudios epidemiológicos de intervención en humanos y es objeto de intenso debate en la actualidad. Según algunos autores, el carácter preventivo ampliamen temente aceptado de las dietas ricas en frutas y verduras frente a muchos cánceres podría deberse a su alto contenido en antioxidantes como el ascorbato.

7.7. Glutation

Se trata de un tripéptido de ácido glutámico, cisteína y glicocola que constituye el principal tiol no protético celular. Su actividad antioxidante se debe a la capacidad reductora del grupo tiólico de la cisteína. Puede actuar como antioxidante en reacciones enzimáticas (como la de la GPx) o no enzimáticas. Protege de la oxidación a grupos -SH esenciales de las proteínas. También puede reaccionar con radica les libres como el O$_2^-$ o el OH$. Al reaccionar con oxidantes, el GSH se oxida a GSSG, que presenta un puente disulfuro entre dos moléculas de glutatión. El GSSG es muy tóxico para las células, motivo por el cual éstas tienden a mantener una razón GSSG/GSH hepática enormemente baja (hasta 0.03 o menor), mediante la reducción del GSSG a GSH con la glutatión reductasa, o exportando activamente el GSSG al exterior celular. Hasta tal punto es esto así que la medida de la razón GSSG/GSH se considera un estimator fiable del grado de estrés oxidativo tisular. También se ha descrito la capacidad del GSH para realizar reacciones de «extinción» del O$_2^-$ singlete, devolviéndolo a su estado basal no reactiv (triplete). El GSH interviene también en muchas funciones normales de catálisis, metabolismo y transporte en las células.

Gracias a los trabajos del grupo de Meister (67) se sabe que el GSH y el ascorbato interaccionan de forma cooperativa (67, 68). Así, el ascorbato es capaz de proteger a los cobayos y a las ratas recién nacidas (que no sintetizan el ácido
ascórbico) de la deficiencia en GSH causada por la inhibición de su síntesis tras el tratamiento con butionina sulfoximina (67). Los ratones adultos, que sí sintetizan el ascorbato, resisten sin embargo esta ausencia de GSH, aunque muestran anormalidades en varios tejidos, especialmente en las mitocondrias. Dichas alteraciones remiten tras la suplementación de la dieta con ascorbico, manipulación que eleva los niveles de GSH (69). El tratamiento con ésteres de GSH también es capaz de evitar el escorbuto en cobayos sometidos a dietas sin vitamina C (67).

7.8. Vitamina E

En la naturaleza existen ocho substancias con actividad vitamina E, el d-α, d-β, d-gamma, y d-delta tocoferol y los correspondientes tocoferalones. De ellos, el d-α-tocoferol es el que muestra más actividad biológica y constituye el estándar de comparación. La vitamina E suele ser el principal antioxidante de las membranas en las células animales. Su actividad antioxidante se debe al carácter reductor del grupo hidroxilo de su anillo cromanol. Su solubilidad en la membrana le permite la accesibilidad directa a grupos peroxil (ROO) que serían reducidos a hidroperóxi- dos, los cuales serían entonces degradados hasta alcoholes (estables) por la GPx. La importancia capital de esta reacción es que impide que los radicales ROO oxidén a otra substancia orgánica; es decir, impide la reacción de propagación (multiplicativa), que es la principal causante de la peroxidación lipídica. Otro mecanismo posible es la reacción con radicales alcoxi (RO), lo que podría ser de utilidad (limitando también la propagación) en caso de que la degradación de hidroperóxi- dos por la vía de la GPx no hubiese sido totalmente eficiente. En ambos casos al reaccionar la vitamina se convierte en radical tocoferilo (VitEO). Puesto que el pool de vitamina E celular es pequeño, el sistema sólo es funcional si la forma reducida de la vitamina E (VitEOH) se regenera a la misma velocidad con la que se degrada. Se ha propuesto que este papel regenerador podría correr a cargo del ascorbato, ocurriendo la interacción en la interfase citosol-membrana, lo que plantearía la posibilidad de que ambas substancias trabajen en tándem desde el punto de vista redox. Esto se ha visto muchas veces in vitro (70, 71) pero aún no está del todo claro in vivo (72, 73).

La vitamina E es particularmente importante en los orgánulos, tejidos y dietas que contienen niveles relativamente altos de ácidos grasos poliinsaturados, para evitar su degradación oxidativa. Esto ocurre en el cerebro, las mitocondrias o ani- males tratados con dietas ricas en aceites de pescado. Una de las fuentes dietéticas más concentradas de vitamina E es el aceite de germen de trigo que contiene más de 1 gramo por Kg. La absorción eficiente de la vitamina E necesita la presencia de sales biliares en el intestino, por lo cual su suplementación aislada no es efectiva a menos que se realice con las comidas. Datos recientes sugieren que la suplemen- tación con sólo 100 mg de vitamina E/día tras las comidas durante un mes es capaz de disminuir el estrés oxidativo en humanos adultos sanos (74).
7.9. Carotenoides

Junto con la vitamina E, los carotenoides son los antioxidantes principales de las membranas biológicas, y en los animales se obtienen también a partir de la dieta. Tienen una gran capacidad para dar lugar a reacciones de extinción como la del O₂ singlete a triplete y también pueden interaccionar con radicales libres a presiones parciales bajas de oxígeno como las que puede haber en los tejidos. Se han descrito casi 600 carotenoides diferentes (75). Sin embargo, solo algunos de ellos aparecen en cantidades apreciables en los tejidos y el plasma. Entre estos últimos se encuentran el α- y β-caroteno, la luteína, el licopeno, la zeaxantina y la criptoantina. Además de su papel antioxidante, muchos carotenoides son precursors de la vitamina A, funcionan como pigmentos accesorios en la fotosíntesis, y protegen contra la sensibilización por la radiación luminosa. Su capacidad antioxidante se ha demostrado en soluciones homogéneas, liposomas, lipoproteínas, membranas biológicas, células y animales enteros. La capacidad antioxidante en microsomas y mitocondrias hepáticas de rata se muestra a niveles entre 0.1 y 100 μM según el prooxidante y el sistema utilizado (75).

El β-caroteno y los tocoferoles se protegen mutuamente frente a la pérdida por oxidación (76) y muestran efectos sinérgicos en microsomas (77). También se han descrito interacciones positivas de los carotenos con la SOD, el ascorbato y otros antioxidantes en los tejidos (75). La revisión de la literatura indica que la mayor parte de los trabajos muestran una capacidad antimitagénica (78) y anticarcinogénica (79) de los carotenoides en modelos animales, aunque aún no existen evidencias directas de que esta capacidad se deba a su actividad antioxidante. Lo mismo se puede decir de los estudios epidemiológicos realizados en humanos, que sugieren que los carotenoides pueden disminuir el riesgo de cáncer y otras enfermedades degenerativas (80).

7.10. Otros antioxidantes

Existen otras muchas sustancias con capacidad antioxidante que pueden producirse en el organismo o provenir de la dieta. No se tratan en esta revisión por concisión pero deben ser mencionadas. Entre ellas se encuentran el ácido úrico, la bilirrubina, la transferrina y la ferritina (por ligar hierro en plasma o tejidos), los quelantes de iones metálicos, proteínas como la ceruloplasmina que tienen actividad ferroxdasa, polifenoles, flavonoides, aminas aromáticas, haptoglobinas, o el ácido lipoico. Entre los antioxidantes fenólicos potentes presentes en el mundo vegetal se encuentran la curcumina, las catequinas, la quercetina, el kaempferol o el ácido cafécico. Aunque en las décadas pasadas se habló de la ubiquinona fundamentalmente como el generador mitocondrial de radicales libres (9), hoy sabemos que esta substancia actúa fundamentalmente como antioxidante (81-83), mientras que dicha generación mitocondrial ocurre sin duda en transportadores de electrones como el Complejo I (8, 10).
Recientemente se ha propuesto que la hormona de origen pineal melatonina, que interviene en el control de los ritmos circadianos, sería el antioxidante más potente, especialmente en el núcleo celular (84). Sin embargo en muchos casos, como parece ocurrir con la melatonina, esta capacidad antioxidante se da a concentraciones que no parece que se alcancen in vivo. A fin de cuentas, una infinidad de substancias son susceptibles de interaccionar con los radicales libres simplemente porque éstos son muy reactivos. Pero para que la substancia sea estrictamente un antioxidante in vivo, dicha interacción debe darse a las concentraciones que ocurren en los tejidos y el líquido extracelular. Esto se cumple sin ninguna duda al menos en el caso de los antioxidantes a los que se ha dedicado una sección propia en esta revisión. Hace aproximadamente una década se habló del papel antioxidante de los estrógenos, posibilidad que hoy prácticamente ya no se investiga. Entre los antioxidantes sintéticos se encuentran el ebselen (que mimetiza a la GPx), la N-acetilcisteína, los ésteres de GSH, el probucol, la α-fenil N-tert-butilnitrona, la nitecapona, la penicilamina, los lazaroides, los aminosalicilatos, los nitroxidos, el tamoxifeno, o los plasmalógenos.

8. CONCLUSION

En resumen, el oxígeno es una de las moléculas más necesarias para los seres vivos, pero también muestra toxicidad porque su metabolismo en las células da lugar a la formación de radicales libres en cantidades pequeñas pero significativas. La fracción de estos radicales que no es interceptada antes de alcanzar una macromolécula causa modificaciones en los lípidos insaturados, las proteínas y el ADN. Este daño oxidativo parece estar implicado en la aparición de muchas enfermedades degenerativas como las cardiovasculares, el Parkinson o el cáncer. El daño oxidativo al ADN parece ser importante en relación con el envejecimiento, fenómeno que se encuentra en la raíz de esas enfermedades y que ocurre en todos los humanos adultos por muy sanos que se encuentren. Para evitar el exceso de radicales libres, han aparecido una serie de defensas antioxidantes. Unas son endógenas, como las enzimas antioxidantes y el glutatión, y están controladas por loci génicos que pueden inducirse para hacer frente a incrementos agudos del estrés oxidativo. Otras son exógenas, como las vitaminas E y C y los carotenoides, y se pueden obtener con una dieta equilibrada. Mientras que para hacer frente a excesos transitorios de radicales libres la mejor solución parecen ser los antioxidantes, los animales que han aumentado su longevidad y han enlentecido su envejecimiento a lo largo de la evolución parecen haber elegido como solución más eficiente disminuir la intensidad de generación endógena de radicales libres, así como aumentar su capacidad de reparación del daño al ADN.

Esta introducción general sobre radicales libres, daño oxidativo y antioxidantes debe servir como ventana para asomarse a la amplia variedad de temas interesantes cubiertos en este volumen, que cubren la farmacología, toxicología y patología del estrés oxidativo en el organismo joven y viejo y algunos de los métodos más sofisticados disponibles para valorarlo.
9. BIBLIOGRAFIA

42. Richter Ch, Park JW y Ames BN (1988), Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85: 6465-6467.

